Honeywell

N36XX Decoded Engine

User's Guide

Disclaimer

Honeywell International Inc. ("HII") reserves the right to make changes in specifications and other information contained in this document without prior notice, and the reader should in all cases consult HIl to determine whether any such changes have been made. The information in this publication does not represent a commitment on the part of HII.
HII shall not be liable for technical or editorial errors or omissions contained herein; nor for incidental or consequential damages resulting from the furnishing, performance, or use of this material.
This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated into another language without the prior written consent of HII.
Copyright © 2015 Honeywell International Inc. All rights reserved.
Other product names or marks mentioned in this document may be trademarks or registered trademarks of other companies and are the property of their respective owners.
Web Address: www.honeywellaidc.com
Microsoft® Windows® and the Windows logo are trademarks or registered trademarks of Microsoft Corporation.
Other product names or marks mentioned in this document may be trademarks or registered trademarks of other companies and are the property of their respective owners.
For patent information, refer to www.hsmpats.com.

Table of Contents

Customer Support
Technical Assistance vii
Product Service and Repair vii
Limited Warranty vii
Send Feedback vii
Chapter 1 - Getting Started
Introduction 1-1
About This Manual 1-1
Unpacking Your Device 1-1
OEM Scan Engine Models 1-1
Connecting the Development Scan Engine to the PC 1-2
Connecting with USB 1-2
Connecting with RS232 Serial Port 1-3
Reading Techniques 1-4
Menu Bar Code Security Settings 1-4
Setting Custom Defaults 1-4
Resetting the Custom Defaults 1-5
Chapter 2 - Programming the Interface
Introduction 2-1
Programming the Interface - Plug and Play 2-1
Keyboard Wedge 2-1
Laptop Direct Connect 2-1
RS232 Serial Port 2-1
USB IBM SurePos 2-2
USB PC or Macintosh Keyboard 2-2
USB HID 2-2
USB Serial 2-3
Verifone ${ }^{\circledR}$ Ruby Terminal Default Settings 2-3
Gilbarco ${ }^{\circledR}$ Terminal Default Settings 2-4
Honeywell Bioptic Aux Port Configuration 2-4
Datalogic ${ }^{\text {™ }}$ Magellan ${ }^{\ominus}$ Aux Port Configuration 2-4
NCR Bioptic Aux Port Configuration 2-4
Wincor Nixdorf Terminal Default Settings 2-5
Wincor Nixdorf Beetle ${ }^{\text {™ }}$ Terminal Default Settings 2-5
Wincor Nixdorf RS232 Mode A 2-6
Keyboard Country Layout 2-7
Keyboard Style 2-14
Keyboard Conversion 2-15
Control Character Output 2-16
Keyboard Modifiers 2-16
RS232 Modifiers 2-17
RS232 Baud Rate 2-17
RS232 Word Length: Data Bits, Stop Bits, and Parity 2-18
RS232 Receiver Time-Out 2-19
RS232 Handshaking 2-19
RS232 Timeout 2-20
XON/XOFF 2-20
ACK/NAK 2-21
RS232 Stop Mode 2-21
Scanner to Bioptic Communication 2-21
Scanner-Bioptic Packet Mode 2-21
Scanner-Bioptic ACK/NAK Mode 2-22
Scanner-Bioptic ACK/NAK Timeout 2-22
Chapter 3 - Input/Output Settings
Power Up Beeper 3-1
Beep on BEL Character 3-1
Trigger Click 3-1
Good Read and Error Indicators 3-2
Beeper - Good Read 3-2
Beeper Volume - Good Read 3-2
Beeper Pitch - Good Read 3-2
Beeper Pitch - Error 3-3
Beeper Duration - Good Read 3-3
LED - Good Read 3-3
Number of Beeps - Good Read 3-4
Number of Beeps - Error 3-4
Good Read Delay 3-4
User-Specified Good Read Delay 3-4
Manual Trigger Mode 3-5
When in manual trigger mode, the scanner scans until a bar code is read, or until the trigger is released 3-5
LED Illumination - Manual Trigger 3-5
Serial Trigger Mode 3-5
Read Time-Out 3-5
Presentation Mode 3-5
Idle Illumination - Presentation Mode 3-6
Presentation Sensitivity 3-6
Presentation Centering 3-6
Poor Quality Codes 3-8
Poor Quality 1D Codes 3-8
Poor Quality PDF Codes 3-9
CodeGate ${ }^{\circledR}$ 3-9
Mobile Phone Read Mode 3-10
Hands Free Time-Out 3-10
Reread Delay 3-10
User-Specified Reread Delay 3-11
2D Reread Delay 3-11
Character Activation Mode 3-11
Activation Character 3-12
End Character Activation After Good Read 3-12
Character Activation Timeout 3-12
Character Deactivation Mode 3-13
Deactivation Character 3-13
Illumination Lights 3-13
Aimer Delay 3-13
User-Specified Aimer Delay 3-14
Aimer Mode 3-14
Centering 3-14
No Read 3-16
Video Reverse 3-16
Working Orientation 3-17
Chapter 4 - Data Editing
Prefix/Suffix Overview 4-1
To Add a Prefix or Suffix: 4-1
To Clear One or All Prefixes or Suffixes 4-2
To Add a Carriage Return Suffix to All Symbologies 4-2
Prefix Selections 4-2
Suffix Selections 4-2
Function Code Transmit 4-3
Intercharacter, Interfunction, and Intermessage Delays 4-3
Intercharacter Delay 4-3
User Specified Intercharacter Delay 4-3
Interfunction Delay 4-4
Intermessage Delay 4-4
Chapter 5 - Data Formatting
Data Format Editor Introduction 5-1
Add a Data Format 5-1
Other Programming Selections. 5-2
Terminal ID Table 5-3
Data Format Editor Commands 5-3
Move Commands 5-6
Search Commands 5-7
Miscellaneous Commands 5-9
Data Formatter 5-12
Primary/Alternate Data Formats 5-13
Chapter 6 -Symbologies
All Symbologies 6-1
Message Length Description 6-1
Codabar 6-2
Codabar Concatenation 6-3
Code 39 6-4
Code 32 Pharmaceutical (PARAF) 6-5
Full ASCII 6-6
Code 39 Code Page 6-6
Interleaved 2 of 5 6-7
NEC 2 of 5 6-8
Code 93 6-9
Code 93 Code Page 6-10
Straight 2 of 5 Industrial (three-bar start/stop) 6-11
Straight 2 of 5 IATA (two-bar start/stop) 6-12
Matrix 2 of 5 6-13
Code 11 6-14
Code 128 6-15
ISBT 128 Concatenation 6-15
Code 128 Code Page 6-16
GS1-128 6-17
UPC-A 6-17
UPC-A/EAN-13 with Extended Coupon Code 6-19
Coupon GS1 DataBar Output 6-20
UPC-E0 6-20
UPC-E1 6-22
EAN/JAN-13 6-23
Convert UPC-A to EAN-13 6-23
ISBN Translate 6-25
EAN/JAN-8 6-25
MSI 6-27
GS1 DataBar Omnidirectional 6-29
GS1 DataBar Limited 6-29
GS1 DataBar Expanded 6-30
Codablock A 6-30
Codablock F 6-31
PDF417 6-32
MacroPDF417 6-32
MicroPDF417 6-33
GS1 Composite Codes 6-33
UPC/EAN Version 6-34
GS1 Emulation 6-34
TCIF Linked Code 39 (TLC39) 6-35
QR Code 6-35
QR Code Page 6-36
Data Matrix 6-37
Data Matrix Code Page 6-37
MaxiCode 6-38
Aztec Code 6-39
Aztec Code Page 6-39
Chinese Sensible (Han Xin) Code 6-40
Postal Codes - 2D 6-41
Single 2D Postal Codes: 6-41
Combination 2D Postal Codes: 6-42
Postal Codes - Linear 6-45
China Post (Hong Kong 2 of 5) 6-45
Korea Post 6-46
Chapter 7 - Imaging Commands
Single-Use Basis 7-1
Command Syntax 7-1
Image Snap - IMGSNP 7-1
IMGSNP Modifiers 7-1
Image Ship - IMGSHP 7-3
IMGSHP Modifiers 7-3
Chapter 8 - Interface Keys
Keyboard Function Relationships 8-1
Supported Interface Keys 8-3
Chapter 9 - Utilities
To Add a Test Code I.D. Prefix to All Symbologies 9-1
Show Decoder Revision 9-1
Show Scan Driver Revision 9-1
Show Software Revision 9-1
Show Data Format 9-1
Test Menu 9-2
TotalFreedom 9-2
Application Plug-Ins (Apps) 9-2
EZConfig-Scanning Introduction 9-3
Installing EZConfig-Scanning from the Web 9-3
Resetting the Factory Defaults 9-4
Chapter 10 - Serial Programming Commands
Conventions 10-1
Menu Command Syntax 10-1
Query Commands 10-1
Responses 10-2
Trigger Commands 10-3
Resetting the Custom Defaults 10-3
Menu Commands 10-3
Chapter 11-Maintenance and Troubleshooting
Repairs 11-1
Inspecting Cords and Connectors 11-1
Troubleshooting 11-1

Appendix A-Reference Charts

Symbology Charts ...A-1
Linear Symbologies ...A-1
2D Symbologies...A-3
Postal Symbologies ..A-3
ASCII Conversion Chart (Code Page 1252)...A-3
Lower ASCII Reference Table...A-4
ISO 2022/ISO 646 Character Replacements ...A-8
Keyboard Key References..A-10
Required Safety Label ..A-10
Dust and Dirt...A-10
Product Environmental Information ..A-11

Sample Symbols

Programming Chart

Customer Support

Technical Assistance

If you need assistance installing or troubleshooting your device, please contact us by using one of the methods below:
Knowledge Base: www.hsmknowledgebase.com
Our Knowledge Base provides thousands of immediate solutions. If the Knowledge Base cannot help, our Technical Support Portal (see below) provides an easy way to report your problem or ask your question.
Technical Support Portal: www.hsmsupportportal.com
The Technical Support Portal not only allows you to report your problem, but it also provides immediate solutions to your technical issues by searching our Knowledge Base. With the Portal, you can submit and track your questions online and send and receive attachments.

Web form: www.hsmcontactsupport.com
You can contact our technical support team directly by filling out our online support form. Enter your contact details and the description of the question/problem.
Telephone: www.honeywellaidc.com/locations
For our latest contact information, please check our website at the link above.

Product Service and Repair

Honeywell International Inc. provides service for all of its products through service centers throughout the world. To obtain warranty or non-warranty service, please visit www.honeywellaidc.com and select Support > Contact Service and Repair to see your region's instructions on how to obtain a Return Material Authorization number (RMA \#). You should do this prior to returning the product.

Limited Warranty

Refer to www.honeywellaidc.com/warranty_information for your product's warranty information.

Send Feedback

Your feedback is crucial to the continual improvement of our documentation. To provide feedback about this manual, contact the Honeywell Technical Communications department at ACSHSMTechnicalCommunications@honeywell.com.

Getting Started

Introduction

The N36XX scan engine is designed for integration into a wide range of OEM devices. The scan engine's compact mechanical design can drop into many existing applications, allowing OEMs and third-party manufacturers to integrate the benefits of image-based scanning into a variety of devices, including hand held computers (PDTs, medical instrumentation, kiosks, diagnostic equipment, and robotics. The N36XX unit decodes linear, 2D, postal codes, and OCR features.

About This Manual

This User's Guide provides demonstration, installation, and programming instructions for the N36XX scan engine.
Honeywell's bar code scan engines are factory programmed for the most common terminal and communications settings. If you need to change these setting, programming is accomplished by scanning the bar codes in this guide.
An asterisk (*) next to an option indicates the default setting.

Unpacking Your Device

After you open the shipping carton containing the OEM scan engine(s), take the following steps:

- Check for damage during shipment. Report damage immediately to the carrier who delivered the carton.
- Make sure the items in the carton match your order.
- Save the shipping container for later storage or shipping.

OEM Scan Engine Models

There are two models of the OEM scan engine, which may be used with the interfaces described in this manual. Refer to the chart below to determine the models that can be used with your interface.

Models	Interface	Decoding Capability
N3680X-XX-TTL	TTL Level 232	Linear, 2D, postal, OCR
N3680X-XX-USB	Full-Speed USB	Linear, 2D, postal, OCR

Connecting the Development Scan Engine to the PC

The development OEM scan engine can connect to a PC for evaluation.

Connecting with USB

Note: The N3680XX-XX-USB scan engine will only communicate USB through the 10 pin modular connector.

1. Turn off power to the terminal/computer.
2. If using full-speed USB, connect the USB interface cable to the interface board and to the matching USB port on the computer.

3. Verify the scan engine operation by scanning a bar code from the Sample Symbols in the back of this manual. The scan engine beeps once when a bar code is successfully decoded.

Connecting with RS232 Serial Port

1. If using an RS-232 connection, connect the serial interface cable to the interface board and to the matching port on the back of the computer.

2. Connect the power supply connector to the serial interface cable. Plug in the power supply.
3. Turn the terminal/computer power back on. The scan engine beeps.
4. If connecting the scan engine using an RS-232 interface, all communication parameters between the scan engine and terminal must match for correct data transfer through the serial port using RS-232 protocol. Scan the RS-232 interface bar code below. This programs the scan engine for an RS-232 interface at 115,200 baud, parity-none, 8 data bits, 1 stop bit, and adds a suffix of a CR LF.

RS-232 Interface
5. Verify the scan engine operation by scanning a bar code from the Sample Symbols in the back of this manual. The scan engine beeps once when a bar code is successfully decoded.
To connect an scan engine to your host system, refer to the N36XX Integration Manual.

Reading Techniques

The scan engine has a view finder that projects a bright red aiming beam that corresponds to the scan engine's horizontal field of view. The aiming beam should be centered over the bar code, but it can be positioned in any direction for a good read.

Linear bar code

2D Matrix symbol

The aiming beam is smaller when the scan engine is closer to the code and larger when it is farther from the code. Symbologies with smaller bars or elements (mil size) should be read closer to the unit. Symbologies with larger bars or elements (mil size) should be read farther from the unit. To read single or multiple symbols (on a page or on an object), hold the scan engine at an appropriate distance from the target, pull the trigger, and center the aiming beam on the symbol. If the code being scanned is highly reflective (e.g., laminated), it may be necessary to tilt the code up 15° to 18° to prevent unwanted reflection.

Menu Bar Code Security Settings

Honeywell scan engines are programmed by scanning menu bar codes or by sending serial commands to the scan engine. If you want to restrict the ability to scan menu codes, you can use the Menu Bar Code Security settings. Contact the nearest technical support office Technical Assistance on page vii for further information.

Setting Custom Defaults

You have the ability to create a set of menu commands as your own, custom defaults. To do so, scan the Set Custom Defaults bar code below before scanning the menu commands for your custom defaults. If a menu command requires scanning numeric codes from the back cover, then a Save code, that entire sequence will be saved to your custom defaults. When you have entered all the commands you want to save for your custom defaults, scan the Save Custom Defaults bar code.

MNUCDP.
Set Custom Defaults

Save Custom Defaults

You may have a series of custom settings and want to correct a single setting. To do so, just scan the new setting to overwrite the old one. For example, if you had previously saved the setting for Beeper Volume at Low to your custom defaults, and decide
you want the beeper volume set to High, just scan the Set Custom Defaults bar code, then scan the Beeper Volume High menu code, and then Save Custom Defaults. The rest of the custom defaults will remain, but the beeper volume setting will be updated.

Resetting the Custom Defaults

If you want the custom default settings restored to your scan engine, scan the Activate Custom Defaults bar code below. This is the recommended default bar code for most users. It resets the scan engine to the custom default settings. If there are no custom defaults, it will reset the scan engine to the factory default settings. Any settings that have not been specified through the custom defaults will be defaulted to the factory default settings.

Activate Custom Defaults

Programming the Interface

Introduction

This chapter describes how to program your system for the desired interface.

Programming the Interface - Plug and Play

Plug and Play bar codes provide instant scan engine set up for commonly used interfaces.
Note: After you scan one of the codes, power cycle the host terminal to have the interface in effect.

Keyboard Wedge

If you want your system programmed for an IBM PC AT and compatibles keyboard wedge interface with a USA keyboard, scan the bar code below. Keyboard wedge is the default interface.
Note: The following bar code also programs a carriage return (CR) suffix.

IBM PC AT and Compatibles with CR suffix

Laptop Direct Connect

For most laptops, scanning the Laptop Direct Connect bar code allows operation of the scan engine in parallel with the integral keyboard. The following Laptop Direct Connect bar code also programs a carriage return (CR) suffix and turns on Emulate External Keyboard (page 2-15).

RS232 Serial Port

The RS232 Interface bar code is used when connecting to the serial port of a PC or terminal. The following RS232 Interface bar code also programs a carriage return (CR) and a line feed (LF) suffix, baud rate, and data format as indicated below. It also changes the trigger mode to manual.

Option	Setting
Baud Rate	$115,200 \mathrm{bps}$
Data Format	8 data bits, no parity bit, 1 stop bit

RS232 Interface

USB IBM SurePos

Scan one of the following "Plug and Play" codes to program the scan engine for an IBM SurePos (USB handheld scanner) or IBM SurePos (USB tabletop scanner) interface.
Note: After scanning one of these codes, you must power cycle the cash register.

USB IBM SurePos
(USB Handheld Scanner) Interface

Each bar code above also programs the following suffixes for each symbology:

Symbology	Suffix	Symbology	Suffix
EAN 8	0C	Code 39	00 OA OB
EAN 13	16	Interleaved 2 of 5	00 OD OB
UPC A	OD	Code 128	00 18 OB
UPC E	0A	Code 39	00 OA OB

USB PC or Macintosh Keyboard

Scan one of the following codes to program the scan engine for USB PC Keyboard or USB Macintosh Keyboard. Scanning these codes also adds a CR suffix.

USB HID

Scan the following code to program the scan engine for USB HID bar code scanners.

USB Serial

Scan the following code to program the scan engine to emulate a regular RS232-based COM Port. If you are using a Microsoft® Windows® PC, you will need to download a driver from the Honeywell website (www.honeywellaidc.com). The driver will use the next available COM Port number. Apple® Macintosh computers recognize the scan engine as a USB CDC class device and automatically use a class driver.

USB Serial
Note: No extra configuration (e.g., baud rate) is necessary.

ACK/NAK Mode

USBACK1.
ACK/NAK Mode On

Verifone ${ }^{\circledR}$ Ruby Terminal Default Settings

Scan the following Plug and Play code to program the scan engine for a Verifone Ruby terminal. This bar code sets the baud rate to 1200 bps and the data format to 8 data bits, no parity bit, 1 stop bit. It also adds a line feed (LF) suffix and programs the following prefixes for each symbology:

Symbology	Prefix
UPC-A	A
UPC-E	A
EAN-8	FF
EAN-13	F

PAPRBY.
Verifone Ruby Settings

Gilbarco ${ }^{\circledR}$ Terminal Default Settings

Scan the following Plug and Play code to program the scan engine for a Gilbarco terminal. This bar code sets the baud rate to 2400 bps and the data format to 7 data bits, even parity, 2 stop bits. It also adds a carriage return (CR) suffix and programs the following prefixes for each symbology:

Symbology	Prefix
UPC-A	A
UPC-E	E0
EAN-8	FF
EAN-13	F

Honeywell Bioptic Aux Port Configuration

Scan the following Plug and Play code to program the scan engine for a Honeywell bioptic scanner auxiliary port configuration. This bar code sets the baud rate to 38400 bps and the data format to 8 data bits, no parity, 1 stop bit.

Honeywell Bioptic Settings

Datalogic ${ }^{\text {TM }}$ Magellan ${ }^{\text {© }}$ Aux Port Configuration

Scan the following Plug and Play code to program the scan engine for a Datalogic Magellan auxiliary port configuration. This bar code sets the baud rate to 9600 bps and the data format to 8 data bits, no parity, 1 stop bit.

Datalogic Magellan Bioptic Settings

NCR Bioptic Aux Port Configuration

Scan the following Plug and Play code to program the scan engine for an NCR bioptic scanner auxiliary port configuration. The following prefixes are programmed for each symbology:

Symbology	Prefix	Symbology	Prefix
UPC-A	A	Interleaved 2 of 5	b
UPC-E	E0	Code 128	f
EAN-8	FF	GS1 DataBar Omnidirectional	r
EAN-13	F	GS1 DataBar Expanded	r
Code 39	a	Codabar N Pharmaceutical (PARAF)	

Wincor Nixdorf Terminal Default Settings

Scan the following Plug and Play code to program the scan engine for a Wincor Nixdorf terminal. This bar code sets the baud rate to 9600 bps and the data format to 8 data bits, no parity, 1 stop bit.

Wincor Nixdorf Terminal Settings

Wincor Nixdorf Beetle ${ }^{\text {TM }}$ Terminal Default Settings

Scan the following Plug and Play code to program the scanner for a Wincor Nixdorf Beetle terminal. The following prefixes are programmed for each symbology:

Symbology	Prefix	Symbology	Prefix
Aztec Code	V	Interleaved 2 of 5	I
Codabar	N	MaxiCode	T
Code 93	L	MicroPDF417	S
Code 128	K	PDF417	Q
Data Matrix	R	QR Code	U
EAN-8	B	Straight 2 of 5 IATA	H
EAN-13	A	UPC-A	A0
GS1 DataBar	E	UPC-E	C
GS1-128	P	All other bar codes	M

PAPBTL
Wincor Nixdorf Beetle Settings

Wincor Nixdorf RS232 Mode A

Scan the following Plug and Play code to program the scanner for a Wincor Nixdorf RS232 Mode A terminal. This bar code sets the baud rate to 9600 bps and the data format to 8 data bits, odd parity, 1 stop bit. The following prefixes are programmed for each symbology:

Symbology	Prefix	Symbology	Prefix
Code 128	K	EAN-13	A
Code 93	L	GS1-128	K
Codabar	N	Interleaved 2 of 5	I
UPC-A	A0	Plessey	O
UPC-E	C	Straight 2 of 5 IATA	H
EAN-8	B	GS1 DataBar	E
All other bar codes	M		

РAPWMA.
Wincor Nixdorf RS232 Mode A
Settings

Keyboard Country Layout

Scan the appropriate country code below to program the keyboard layout for your country or language. As a general rule, the following characters are supported, but need special care for countries other than the United States:
@ | \$ \# \{ \} [] = / ' $1<>$ ~
Keyboard Countries

* United States

KBDCTYB2.
Belarus

KBDCTY59.
Brazil (MS)

KBCCTY52.
Bulgaria (Cyrillic)

Keyboard Countries (Continued)

KBDCTY18.
Canada (French)

KBDCTYB2. Croatia

Czech (Programmers)

KBDCTY38.
Czech (QWERTZ)

KBDCTY11.
Dutch (Netherlands)

Keyboard Countries (Continued)

|||
 KBDCTYBS.
 Faroese

Keyboard Countries (Continued)

KBDCTY
Hungarian (101 key)

Keyboard Countries (Continued)

Kyrgyz (Cyrillic)

Keyboard Countries (Continued)

KBDCTY36.
Serbia (Latin)

Keyboard Countries (Continued)

KBDCTYB1.
Slovenia

Spanish variation

Keyboard Countries (Continued)

United States (Dvorak)

KBDCTYB8.
United States (Dvorak left)

KBDCTY30.
United States (International)

Keyboard Style

This programs keyboard styles, such as Caps Lock and Shift Lock. If you have used Keyboard Conversion settings, they will override any of the following Keyboard Style settings. Default = Regular.
Regular is used when you normally have the Caps Lock key off.

Caps Lock is used when you normally have the Caps Lock key on.

Shift Lock is used when you normally have the Shift Lock key on (not common to U.S. keyboards).

KBCSTY2.
Shift Lock
Automatic Caps Lock is used if you change the Caps Lock key on and off. The software tracks and reflects if you have Caps Lock on or off. This selection can only be used with systems that have an LED that notes the Caps Lock status (AT keyboards).

Autocaps via NumLock bar code should be scanned in countries (e.g., Germany, France) where the Caps Lock key cannot be used to toggle Caps Lock. The NumLock option works similarly to the regular Autocaps, but uses the NumLock key to retrieve the current state of the Caps Lock.

KBDSTY7.
Autocaps via NumLock
Emulate External Keyboard should be scanned if you do not have an external keyboard (IBM AT or equivalent).

KBCSTY5.
Emulate External Keyboard
Note: After scanning the Emulate External Keyboard bar code, you must power cycle your computer.

Keyboard Conversion

Alphabetic keyboard characters can be forced to be all upper case or all lowercase. So if you have the following bar code: "abc569GK," you can make the output "ABC569GK" by scanning Convert All Characters to Upper Case, or to "abc569gk" by scanning Convert All Characters to Lower Case.
These settings override Keyboard Style selections.
Note: If your interface is a keyboard wedge, first scan the menu code for Automatic Caps Lock (page 2-15). Otherwise, your output may not be as expected.

Default = Keyboard Conversion Off.

KBDCNV .

* Keyboard Conversion Off

Convert All Characters
to Upper Case

$\mathrm{KBCON} / 2$.
Convert All Characters
to Lower Case

Control Character Output

This selection sends a text string instead of a control character. For example, when the control character for a carriage return is expected, the output would display [CR] instead of the ASCII code of OD. Refer to ASCII Conversion Chart (Code Page 1252) on page A-3. Only codes 00 through 1F are converted (the first column of the chart).

Note: Control + X (Control + ASCII) Mode overrides this mode.
Default $=$ Off .

Control Character Output On

Keyboard Modifiers

This modifies special keyboard features, such as CTRL+ ASCII codes and Turbo Mode.
Control + X (Control + ASCII) Mode On: The scan engine sends key combinations for ASCII control characters for values 001F. Windows is the preferred mode. All keyboard country codes are supported. DOS mode is a legacy mode, and it does not support all keyboard country codes. New users should use the Windows mode. Refer to Keyboard Function Relationships, page 8-1 for CTRL+ X Values.
Windows Mode Prefix/Suffix Off: The scan engine sends key combinations for ASCII control characters for values 00-1F, but it does not translate any prefix or suffix information.

Default $=$ Control $+X$ Mode Off.

KBDCAS2.

Windows Mode Control + X
Mode On

* Control + X Mode Off

DOS Mode Control + X Mode On

Turbo Mode: The scan engine sends characters to a terminal faster. If the terminal drops characters, do not use Turbo Mode. Default = Off

KBDTMD1.
Turbo Mode On

KBDTMDD.

* Turbo Mode Off

Numeric Keypad Mode: Sends numeric characters as if entered from a numeric keypad. Default = Off

Numeric Keypad Mode On

* Numeric Keypad Mode Off

Automatic Direct Connect Mode: This selection can be used if you have an IBM AT style terminal and the system is dropping characters. Default $=$ Off

Automatic Direct Connect Mode
On
 Mode Off

RS232 Modifiers

RS232 Baud Rate

Baud Rate sends the data from the scan engine to the terminal at the specified rate. The host terminal must be set for the same baud rate as the scan engine. Default $=115200$.

600

 4800

38400

RS232 Word Length: Data Bits, Stop Bits, and Parity

Data Bits sets the word length at 7 or 8 bits of data per character. If an application requires only ASCII Hex characters 0 through 7 F decimal (text, digits, and punctuation), select 7 data bits. For applications that require use of the full ASCII set, select 8 data bits per character. Default $=8$.
Stop Bits sets the stop bits at 1 or 2. Default = 1.
Parity provides a means of checking character bit patterns for validity.
Default = None.

232WRD3.
7 Data, 1 Stop, Parity Even

7 Data, 1 Stop, Parity None

8 Data, 1 Stop, Parity Even

232WRDB.
8 Data, 1 Stop, Parity Odd

RS232 Receiver Time-Out

The unit stays awake to receive data until the RS232 Receiver Time-Out expires. A manual or serial trigger resets the timeout. When an RS232 receiver is sleeping, a character may be sent to wake up the receiver and reset the time-out. A transaction on the CTS line will also wake up the receiver. The receiver takes 300 milliseconds to completely come up. Change the RS232 receiver time-out by scanning the bar code below, then scanning digits from the inside back cover of this manual, then scanning Save. The range is 0 to 300 seconds. Default $=0$ seconds (no time-out -always on).

RS232 Handshaking

RS232 Handshaking allows control of data transmission from the scan engine using software commands from the host device. When RTS/CTS is turned Off, no data flow control is used.
Flow Control, No Timeout: The scan engine asserts RTS when it has data to send, and will wait indefinitely for CTS to be asserted by the host.
Two-Direction Flow Control: The scan engine asserts RTS when it is OK for the host to transmit. The host asserts CTS when it is OK for the device to transmit.

Flow Control with Timeout: The scan engine asserts RTS when it has data to send and waits for a delay (see RS232 Timeout on page 2-20) for CTS to be asserted by the host. If the delay time expires and CTS is not asserted, the device transmit buffer is cleared and scanning may resume.
Default $=$ RTS/CTS Off.

Flow Control, No Timeout

232 CTS 2
Two-Direction Flow Control

RS232 Timeout

When using Flow Control with Timeout, you must program the length of the delay you want to wait for CTS from the host. Set the length (in milliseconds) for a timeout by scanning the bar code below, then setting the timeout (from 1-5100 milliseconds) by scanning digits from the inside back cover, then scanning Save.

XON/XOFF

Standard ASCII control characters can be used to tell the scan engine to start sending data (XON/XOFF On) or to stop sending data (XON/XOFF Off). When the host sends the XOFF character (DC3, hex 13) to the scan engine, data transmission stops. To resume transmission, the host sends the XON character (DC1, hex 11). Data transmission continues where it left off when XOFF was sent. Default $=$ XON/XOFF Off.

ACK/NAK

After transmitting data, the scan engine waits for an ACK character (hex 06) or a NAK character (hex 15) response from the host. If ACK is received, the communications cycle is completed and the scan engine looks for more bar codes. If NAK is received, the last set of bar code data is retransmitted and the scan engine waits for ACK/NAK again. Turn on the ACK/ NAK protocol by scanning the ACK/NAK On bar code below. To turn off the protocol, scan ACK/NAK Off. Default = ACK/ NAK Off.

RS232 Stop Mode

Scan the following bar code to force the engine into a stop mode. Restart the engine by using a trigger pull, nWake, or RxD toggle.

Scanner to Bioptic Communication

The following settings are used to set up communication between Honeywell scan engines and bioptic scanners.
Note: The scan engine's baud rate must be set to 38400 and the RS232 timeout must be set to 3000 in order to communicate with a bioptic scanner. See "RS232 Baud Rate" on page 2-17, and RS232 Timeout on page 2-20 for further information.

Scanner-Bioptic Packet Mode

Packet Mode On must be scanned to set the scan engine's format so it is compatible with a bioptic scanner. Default = Packet Mode Off.

* Packet Mode Off

Scanner-Bioptic ACK/NAK Mode

Bioptic ACK/Nak On must be scanned so the scan engine will wait for an ACK or NAK from a bioptic scanner after each packet is sent. The Scanner-Bioptic ACK/NAK Timeout (below) controls how long the scanner will wait for a response. Default = Bioptic ACK/NAK Off.

Scanner-Bioptic ACK/NAK Timeout

This allows you to set the length (in milliseconds) for a timeout for a bioptic scanner's ACK/NAK response. Scan the bar code below, then set the timeout (from 1-30,000 milliseconds) by scanning digits from the inside back cover, then scanning Save. Default $=5100$.

Input/Output Settings

Power Up Beeper

The scan engine can be programmed to beep when it's powered up. Scan the Off bar code(s) if you don't want a power up beep. Default = Power Up Beeper On - Scanner.

Power Up Beeper Off -
Scanner

Beep on BEL Character

You may wish to force the scan engine to beep upon a command sent from the host. If you scan the Beep on BEL On bar code below, the scan engine will beep every time a BEL character is received from the host. Default = Beep on BEL Off.

Trigger Click

To hear an audible click every time the scanner trigger is pressed, scan the Trigger Click On bar code below. Scan the Trigger Click Off code if you don't wish to hear the click. (This feature has no effect on serial or automatic triggering.) Default = Trigger Click Off.

Good Read and Error Indicators

Beeper - Good Read

The beeper may be programmed On or Off in response to a good read. Turning this option off only turns off the beeper response to a good read indication. All error and menu beeps are still audible. Default = Beeper - Good Read On.

* Beeper - Good Read On

Beeper Volume - Good Read

The beeper volume codes modify the volume of the beep the scan engine emits on a good read. Default = High.

Off

Beeper Pitch - Good Read

The beeper pitch codes modify the pitch (frequency) of the beep the scan engine emits on a good read. Default = Medium.

BEPFQ14200.
High (4200 Hz)

Beeper Pitch - Error

The beeper pitch codes modify the pitch (frequency) of the sound the scan engine emits when there is a bad read or error. Default = Razz.

BEPFO23250
Medium (3250 Hz)

Beeper Duration - Good Read

The beeper duration codes modify the length of the beep the scan engine emits on a good read. Default = Normal.

BEPBIPD.

* Normal Beep

LED - Good Read

The LED indicator can be programmed On or Off in response to a good read. Default $=$ On.

BEPLED1.

* LED - Good Read On

Number of Beeps - Good Read

The number of beeps of a good read can be programmed from 1-9. The same number of beeps will be applied to the beeper and LED in response to a good read. For example, if you program this option to have five beeps, there will be five beeps and five LED flashes in response to a good read. The beeps and LED flashes are in sync with one another. To change the number of beeps, scan the bar code below and then scan a digit (1-9) bar code and the Save bar code on the Programming Chart inside the back cover of this manual. Default $=1$.

Number of Good Read Beeps/LED Flashes

Number of Beeps - Error

The number of beeps and LED flashes emitted by the scan engine for a bad read or error can be programmed from 1-9. For example, if you program this option to have five error beeps, there will be five error beeps and five LED flashes in response to an error. To change the number of error beeps, scan the bar code below and then scan a digit (1-9) bar code and the Save bar code on the Programming Chart inside the back cover of this manual. Default $=1$.

Good Read Delay

This sets the minimum amount of time before the scan engine can read another bar code. Default $=0 \mathrm{~ms}$ (No Delay).

DLYGRDEDO. Short Delay ($\mathbf{5 0 0} \mathbf{~ m s}$)

User-Specified Good Read Delay

If you want to set your own length for the good read delay, scan the bar code below, then set the delay (from 0-30,000 milliseconds) by scanning digits from the inside back cover, then scanning Save.

DLYGRD.
User-Specified Good Read Delay

Manual Trigger Mode

When in manual trigger mode, the scanner scans until a bar code is read, or until the trigger is released.

LED IIlumination - Manual Trigger

If you wish to set the illumination LED brightness, scan one of the bar codes below. This sets the LED illumination for the scan engine when the trigger is pressed. Default = High.
Note: The LEDs are like a flash on a camera. The lower the ambient light in the room, the brighter the LEDs need to be so the scan engine can "see" the bar codes.

PWRNOL15.
Low

PWRNOL50.

Medium

Serial Trigger Mode

You can activate the scan engine either by pressing the trigger, or using a serial trigger command (see Trigger Commands on page 10-3). When in serial mode, the scan engine scans until a bar code has been read or until the deactivate command is sent. The scan engine can also be set to turn itself off after a specified time has elapsed (see Read Time-Out, which follows).

Read Time-Out

Use this selection to set a time-out (in milliseconds) of the scan engine's trigger when using serial commands to trigger the scan engine. Once the scan engine has timed out, you can activate the scan engine either by pressing the trigger or using a serial trigger command. After scanning the Read Time-Out bar code, set the time-out duration (from 0-300,000 milliseconds) by scanning digits on the Programming Chart inside the back cover, then scanning Save. Default $=30,000 \mathrm{~ms}$.

Presentation Mode

Presentation Mode uses ambient light to detect bar codes. The LED dims until a bar code is presented to the scanner, then the LED brightens to read the code. If the light level in the room is not high enough, Presentation Mode may not work properly.

Scan the following bar code to program your scanner for Presentation Mode.

Idle Illumination - Presentation Mode

Scan one of the bar codes below to set the LED illumination for the scanner when it is in an idle state in Presentation Mode. Default = High.

Note: If you use one of the lower Idle Illumination settings, and there is not enough ambient light, the scanner may have difficulty detecting when a bar code is presented to it. If the scanner has difficulty "waking up" to read bar codes, you may need to set the Idle Illumination to a brighter setting.

Medium

Note: LED Illumination - Presentation Mode does not apply to Poor Quality PDF Codes or Mobile Phone Read Mode.

Presentation Sensitivity

Presentation Sensitivity is a numeric range that increases or decreases the scan engine's reaction time to bar code presentation. To set the sensitivity, scan the Sensitivity bar code, then scan the degree of sensitivity (from 0-20) from the inside back cover, and Save. 0 is the most sensitive setting, and 20 is the least sensitive. Default $=1$.

Presentation Centering

Use Presentation Centering to narrow the scanner's field of view when it is in the stand to make sure the scanner reads only those bar codes intended by the user. For instance, if multiple codes are placed closely together, Presentation Centering will insure that only the desired codes are read.
Note: To adjust centering when the scanner is hand-held, see Centering (page 3-14).
If a bar code is not touched by a predefined window, it will not be decoded or output by the scanner. If Presentation Centering is turned on by scanning Presentation Centering On, the scanner only reads codes that pass through the centering window you specify using the Top of Presentation Centering Window, Bottom of Presentation Centering Window, Left, and Right of Presentation Centering Window bar codes.
In the example below, the white box is the centering window. The centering window has been set to 20% left, 30% right, 8% top, and 25% bottom. Since Bar Code 1 passes through the centering window, it will be read. Bar Code 2 does not pass through the centering window, so it will not be read.

Note: A bar code needs only to be touched by the centering window in order to be read. It does not need to pass completely through the centering window.

Scan Presentation Centering On, then scan one of the following bar codes to change the top, bottom, left, or right of the centering window. Then scan the percent you want to shift the centering window using digits on the inside back cover of this manual. Scan Save. Default Presentation Centering $=40 \%$ for Top and Left, 60% for Bottom and Right.

PDCTOP.
Top of Presentation Centering Window

PDCLFT.
Left of
Presentation Centering Window

Note: Ilf you are taking images (see Imaging Commands beginning on page 7-1), you must set the In-Stand Sensor to Off.
You may program a Streaming Presentation Mode (Normal, Enhanced, or Mobile Phone) you wish to use for in-stand scanning, and a Manual Trigger mode (Normal, Enhanced, or Mobile Phone) you wish to use for out-of-stand scanning. To do this, you must first scan the preferred Streaming Presentation mode (see below), then scan the Manual Trigger mode (see page $3-5$ and page $3-10$) you want to use.

Poor Quality Codes

Poor Quality 1D Codes

This setting improves the scanner's ability to read damaged or badly printed linear bar codes. When Poor Quality 1D Reading On is scanned, poor quality linear bar code reading is improved, but the scanner's snappiness is decreased, making it less aggressive when reading good quality bar codes. This setting does not affect 2D bar code reading. Default = Poor Quality 1D Reading Off.

Poor Quality 1D Reading On

* Poor Quality 1D Reading Off

Poor Quality PDF Codes

This setting improves the scanner's ability to read damaged or badly printed PDF codes by combining information from multiple images. When Poor Quality PDF On is scanned, poor quality PDF code reading is improved, but the scanner's snappiness is decreased, making it less aggressive when reading good quality bar codes. This setting does not affect 1D bar code reading. Default = Poor Quality PDF Reading Off.

Poor Quality PDF Reading On

PDFXPR0.

* Poor Quality PDF Reading Off

CodeGate ${ }^{\circledR}$

When CodeGate is On, the trigger is used to allow decoded data to be transmitted to the host system. The scanner remains on, scanning and decoding bar codes, but the bar code data is not transmitted until the trigger is pressed. When CodeGate is Off, bar code data is transmitted when it is decoded. Default = CodeGate Off Out-of-Stand.

Mobile Phone Read Mode

When this mode is selected, your scanner is optimized to read bar codes from mobile phone or other LED displays. However, the speed of scanning printed bar codes may be slightly lower when this mode is enabled.

Hand Held Scanning - Mobile Phone

Presentation Scanning Mobile Phone

Note: To turn off Mobile Phone Read Mode, scan a Manual or Serial Trigger Mode bar code (see page 3-5).

Hands Free Time-Out

The Scan Stand and Presentation Modes are referred to as "hands free" modes. If the scanner's trigger is pulled when using a hands free mode, the scanner changes to manual trigger mode. You can set the time the scanner should remain in manual trigger mode by setting the Hands Free Time-Out. Once the time-out value is reached, (if there have been no further trigger pulls) the scanner reverts to the original hands free mode.
Scan the Hands Free Time-Out bar code, then scan the time-out duration (from 0-300,000 milliseconds) from the inside back cover, and Save. Default $=5,000 \mathrm{~ms}$.

Reread Delay

This sets the time period before the scan engine can read the same bar code a second time. Setting a reread delay protects against accidental rereads of the same bar code. Longer delays are effective in minimizing accidental rereads. Use shorter delays in applications where repetitive bar code scanning is required. Reread Delay only works when in a Presentation Mode (see page 3-5). Default = Medium.

DLYRRD2000.
Extra Long (2000 ms)

User-Specified Reread Delay

If you want to set your own length for the reread delay, scan the bar code below, then set the delay (from 0-30,000 milliseconds) by scanning digits from the inside back cover, then scanning Save.

2D Reread Delay

Sometimes 2D bar codes can take longer to read than other bar codes. If you wish to set a separate Reread Delay for 2D bar codes, scan one of the programming codes that follows. 2D Reread Delay Off indicates that the time set for Reread Delay is used for both 1D and 2D bar codes. Default = 2D Reread Delay Off.

DL Y2RR20010.
Medium (2000 ms)

DLY2RR30回.
Long (3000ms)

Character Activation Mode

You may use a character sent from the host to trigger the scanner to begin scanning. When the activation character is received, the scanner continues scanning until either the Character Activation Timeout (page 3-12), the deactivation character is received (see Deactivation Character on page 3-13), or a bar code is transmitted. Scan the following On bar code to use character activation, then use Activation Character (following) to select the character you will send from the host to start scanning. Default = Off.

HSTCEND.

* Off

On

Activation Character

This sets the character used to trigger scanning when using Character Activation Mode. On the ASCII Conversion Chart (Code Page 1252), page A-3, find the hex value that represents the character you want to use to trigger scanning. Scan the following bar code, then use the Programming Chart to read the alphanumeric combination that represents that ASCII character. Scan Save to finish. Default = 12 [DC2].

End Character Activation After Good Read

After a bar code is successfully detected and read from the scanner, the illumination can be programmed either to remain on and scanning, or to turn off. When End Character Activation After Good Read is enabled, the illumination turns off and stops scanning after a good read. If you scan Do Not End Character Activation After Good Read, the illumination remains on after a good read. Default = Do Not End Character Activation After Good Read.

* Do Not End Character

Activation After Good Read

End Character Activation After Good Read

Character Activation Timeout

You can set a timeout for the length of time the illumination remains on and attempting to decode bar codes when using Character Activation Mode. Set the length (in milliseconds) for a timeout by scanning the following bar code, then setting the timeout (from 1-300,000 milliseconds) by scanning digits from the Programming Chart inside the back cover of this manual, then scanning Save. Default $=30,000 \mathrm{~ms}$.

Character Activation Timeout

Character Deactivation Mode

If you have sent a character from the host to trigger the scanner to begin scanning, you can also send a deactivation character to stop scanning. Scan the following On bar code to use character deactivation, then use Deactivation Character (following) to select the character you will send from the host to terminate scanning. Default $=$ Off.

On

Deactivation Character

This sets the character used to terminate scanning when using Character Deactivation Mode. On the ASCII Conversion Chart (Code Page 1252), page A-3, find the hex value that represents the character you want to use to terminate scanning. Scan the following bar code, then use the Programming Chart inside the back cover of this manual to read the alphanumeric combination that represents that ASCII character. Scan Save to finish. Default = 14 [DC4].

Illumination Lights

If you want the illumination lights on while reading a bar code, scan the Lights On bar code, below. However, if you want to turn just the lights off, scan the Lights Off bar code. Default = Lights On.

Note: This setting does not affect the aimer light. The aiming light can be set using Aimer Mode (page 3-14).

Aimer Delay

The aimer delay allows a delay time for the operator to aim the scan engine before the picture is taken. Use these codes to set the time between when the trigger is pulled and when the picture is taken. During the delay time, the aiming light will appear, but the LEDs won't turn on until the delay time is over. Default = Off.

SCNDLYOO.
200 milliseconds

User-Specified Aimer Delay

If you want to set your own length for the duration of the delay, scan the bar code below, then set the time-out by scanning digits ($0-4,000 \mathrm{~ms}$) from the Programming Chart inside the back cover of this manual, then scan Save.

Delay Duration

Aimer Mode

This feature allows you to turn the aimer on and off. When the Interlaced bar code is scanned, the aimer is interlaced with the illumination LEDs. Default $=$ Interlaced.

* Interlaced

Centering

Use Centering to narrow the scan engine's field of view to make sure that when the scanner is hand-held, it reads only those bar codes intended by the user. For instance, if multiple codes are placed closely together, centering will insure that only the desired codes are read. (Centering can be used in conjunction with Aimer Delay, page 3-13, for the most error-free operation in applications where multiple codes are spaced closely together. Using the Aimer Delay and Centering features, the scanner can emulate the operation of older systems, such as linear laser bar code scanners.)
If a bar code is not touched by a predefined window, it will not be decoded or output by the scan engine. If centering is turned on by scanning Centering On, the scan engine only reads codes that pass through the centering window you specify using the Top of Centering Window and Bottom of Centering Window bar codes.

In the example below, the white box is the centering window. The centering window has been set to 8% top and 25% bottom. Since Bar Code 1 passes through the centering window, it will be read. Bar Code 2 does not pass through the centering window, so it will not be read.

A bar code needs only to be touched by the centering window in order to be read. It does not need to pass completely through the centering window.

Scan Centering On, then scan one of the following bar codes to change the top and bottom of the centering window. Then scan the percent you want to shift the centering window using digits on the inside back cover of this manual. Scan Save.
Default Centering $=40 \%$ for Top, 60% for Bottom.

DECWIN1
Centering On

Top of Centering Window

No Read

With No Read turned On, the scan engine notifies you if a code cannot be read. If using an EZConfig-Scanning Tool Scan Data Window (see page 9-3), an "NR" appears when a code cannot be read. If No Read is turned Off, the "NR" will not appear.
Default $=$ Off.

If you want a different notation than "NR," for example, "Error," or "Bad Code," you can edit the output message (see Data Formatting beginning on page 5-1). The hex code for the No Read symbol is 9C.

Video Reverse

Video Reverse is used to allow the scan engine to read bar codes that are inverted. The Video Reverse Off bar code below is an example of this type of bar code. Scan Video Reverse Only to read only inverted bar codes. Scan Video Reverse and Standard Bar Codes to read both types of codes.

Note: After scanning Video Reverse Only, menu bar codes cannot be read. You must scan Video Reverse Off or Video Reverse and Standard Bar Codes in order to read menu bar codes.

Note: Images downloaded from the unit are not reversed. This is a setting for decoding only.

Video Reverse and Standard Bar Codes

* Video Reverse Off

Working Orientation

Some bar codes are direction-sensitive. For example, KIX codes and OCR can misread when scanned sideways or upside down. Use the working orientation settings if your direction-sensitive codes will not usually be presented upright to the scanner. Default = Upright.

Vertical, Bottom to Top

Upside Down

Vertical, Top to Bottom

Data Editing

Prefix/Suffix Overview

When a bar code is scanned, additional information is sent to the host computer along with the bar code data. This group of bar code data and additional, user-defined data is called a "message string." The selections in this section are used to build the user-defined data into the message string.
Prefix and Suffix characters are data characters that can be sent before and after scanned data. You can specify if they should be sent with all symbologies, or only with specific symbologies. The following illustration shows the breakdown of a message string:

Points to Keep In Mind

- It is not necessary to build a message string. The selections in this chapter are only used if you wish to alter the default settings. Default prefix = None. Default suffix = None.
- A prefix or suffix may be added or cleared from one symbology or all symbologies.
- You can add any prefix or suffix from the ASCII Conversion Chart (Code Page 1252), beginning on page A-3, plus Code I.D. and AIM I.D.
- You can string together several entries for several symbologies at one time.
- Enter prefixes and suffixes in the order in which you want them to appear on the output.
- When setting up for specific symbologies (as opposed to all symbologies), the specific symbology ID value counts as an added prefix or suffix character.
- The maximum size of a prefix or suffix configuration is 200 characters, which includes header information.

To Add a Prefix or Suffix:

Step 1. Scan the Add Prefix or Add Suffix symbol (page 4-2).
Step 2. Determine the 2 digit Hex value from the Symbology Chart (included in the Symbology Charts, beginning on page A-1) for the symbology to which you want to apply the prefix or suffix. For example, for Code 128, Code ID is "j" and Hex ID is " 6 A ".

Step 3. Scan the 2 hex digits from the Programming Chart inside the back cover of this manual or scan 9, 9 for all symbologies.
Step 4. Determine the hex value from the ASCII Conversion Chart (Code Page 1252), beginning on page A-3, for the prefix or suffix you wish to enter.
Note: To add the Code I.D., scan 5, C, 8, 0.
To add AIM I.D., scan 5, C, 8, 1 .
To add a backslash (\backslash), scan 5, C, 5, C.
To add a backslash () as in Step 7, you must scan 5C twice - once to create the leading backslash and then to create the backslash itself.

Step 5. Scan the 2 digit hex value from the Programming Chart inside the back cover of this manual.
Step 6. Repeat Steps 4 and 5 for every prefix or suffix character.
Step 7. Scan Save to exit and save, or scan Discard to exit without saving.
Repeat Steps 1-6 to add a prefix or suffix for another symbology.

Example: Add a Tab Suffix to All Symbologies

Step 1. Scan Add Suffix.

Step 2. Scan 9, 9 from the Programming Chart inside the back cover of this manual to apply this suffix to all symbologies.
Step 3. Scan 0, 9 from the Programming Chart inside the back cover of this manual. This corresponds with the hex value for a horizontal tab, shown in the ASCII Conversion Chart (Code Page 1252), beginning on page A-3.

Scan Save, or scan Discard to exit without saving.

To Clear One or All Prefixes or Suffixes

You can clear a single prefix or suffix, or clear all prefixes/suffixes for a symbology. If you have been entering prefixes and suffixes for single symbologies, you can use Clear One Prefix (Suffix) to delete a specific character from a symbology. When you Clear All Prefixes (Suffixes), all the prefixes or suffixes for a symbology are deleted.

Step 1. Scan the Clear One Prefix or Clear One Suffix symbol.
Step 2. Determine the 2 digit Hex value from the Symbology Chart (included in the Symbology Charts, beginning on page A-1) for the symbology from which you want to clear the prefix or suffix.
Step 3. Scan the 2 digit hex value from the Programming Chart inside the back cover of this manual or scan 9,9 for all symbologies.
Your change is automatically saved.

To Add a Carriage Return Suffix to All Symbologies

Scan the following bar code if you wish to add a carriage return suffix to all symbologies at once. This action first clears all current suffixes, then programs a carriage return suffix for all symbologies.

Prefix Selections

Suffix Selections

SUFBKZ.
Add Suffix

SUFCA2.
Clear All Suffixes

Function Code Transmit

When this selection is enabled and function codes are contained within the scanned data, the scan engine transmits the function code to the terminal. Charts of these function codes are provided in Supported Interface Keys starting on page 8-3. When the scanner is in keyboard wedge mode, the scan code is converted to a key code before it is transmitted. Default = Enable.

Intercharacter, Interfunction, and Intermessage Delays

Some terminals drop information (characters) if data comes through too quickly. Intercharacter, interfunction, and intermessage delays slow the transmission of data, increasing data integrity.

Intercharacter Delay

An intercharacter delay of up to 5000 milliseconds (in 5 ms increments) may be placed between the transmission of each character of scanned data. Scan the Intercharacter Delay bar code below, then scan the number of 5 ms delays, and the Save bar code using the Programming Chart inside the back cover of this manual.

To remove this delay, scan the Intercharacter Delay bar code, then set the number of delays to 0 . Scan the Save bar code using the Programming Chart inside the back cover of this manual.
Note: Intercharacter delays are not supported in USB serial emulation.

User Specified Intercharacter Delay

An intercharacter delay of up to 5000 milliseconds (in 5 ms increments) may be placed after the transmission of a particular character of scanned data. Scan the Delay Length bar code below, then scan the number of 5 ms delays, and the Save bar code using the Programming Chart inside the back cover of this manual.

Next, scan the Character to Trigger Delay bar code, then the 2-digit hex value for the ASCII character that will trigger the delay ASCII Conversion Chart (Code Page 1252), beginning on page A-3.

To remove this delay, scan the Delay Length bar code, and set the number of delays to 0 . Scan the Save bar code using the Programming Chart inside the back cover of this manual.

Interfunction Delay

An interfunction delay of up to 5000 milliseconds (in 5 ms increments) may be placed between the transmission of each control character in the message string. Scan the Interfunction Delay bar code below, then scan the number of 5 ms delays, and the Save bar code using the Programming Chart inside the back cover of this manual.

To remove this delay, scan the Interfunction Delay bar code, then set the number of delays to 0 . Scan the Save bar code using the Programming Chart inside the back cover of this manual.

Intermessage Delay

An intermessage delay of up to 5000 milliseconds (in 5 ms increments) may be placed between each scan transmission. Scan the Intermessage Delay bar code below, then scan the number of 5 ms delays, and the Save bar code using the Programming Chart inside the back cover of this manual.

To remove this delay, scan the Intermessage Delay bar code, then set the number of delays to 0 . Scan the Save bar code using the Programming Chart inside the back cover of this manual.

Data Formatting

Data Format Editor Introduction

You may use the Data Format Editor to change the scan engine's output. For example, you can use the Data Format Editor to insert characters at certain points in bar code data as it is scanned. The selections in the following pages are used only if you wish to alter the output. Default Data Format setting = None.

Normally, when you scan a bar code, it is output automatically. However, when you create a format, you must use a "send" command (see Send Commands on page 5-3) within the format program to output data.

Multiple formats may be programmed into the scan engine. They are stacked in the order in which they are entered. However, the following list presents the order in which formats are applied:

1. Specific Terminal ID, Actual Code ID, Actual Length
2. Specific Terminal ID, Actual Code ID, Universal Length
3. Specific Terminal ID, Universal Code ID, Actual Length
4. Specific Terminal ID, Universal Code ID, Universal Length
5. Universal Terminal ID, Actual Code ID, Actual Length
6. Universal Terminal ID, Actual Code ID, Universal Length
7. Universal Terminal ID, Universal Code ID, Actual Length
8. Universal Terminal ID, Universal Code ID, Universal Length

The maximum size of a data format configuration is 2000 bytes, which includes header information.
If a bar code is read that fails the first data format, the next data format, if there is one, will be used on the bar code data. If there is no other data format, the raw data is output.

If you have changed data format settings, and wish to clear all formats and return to the factory defaults, scan the Default Data Format code below.

* Default Data Format

Add a Data Format

Step 1. Scan the Enter Data Format symbol (page 5-2).
Step 2. Select Primary/Alternate Format
Determine if this will be your primary data format, or one of 3 alternate formats. This allows you to save a total of 4 different data formats. To program your primary format, scan 0 using the Programming Chart inside the back cover of this manual. If you are programming an alternate format, scan 1, 2, or 3, depending on which alternate format you are programming. (See "Primary/Alternate Data Formats" on page 5-13 for further information.)

Step 3. Terminal Type

Refer to Terminal ID Table (page 5-3) and locate the Terminal ID number for your PC. Scan three numeric bar codes on the inside back cover to program the scan engine for your terminal ID (you must enter 3 digits). For example, scan 003 for an AT wedge.

Note: 099 indicates all terminal types.
Step 4. Code I.D.
In the Symbology Charts, beginning on page A-1, find the symbology to which you want to apply the data format. Locate the Hex value for that symbology and scan the 2 digit hex value from the Programming Chart inside the back cover of this manual.
If you wish to create a data format for all symbologies, with the exception of some specific symbologies, refer to B8 (page 5-11).

If you are creating a data format for Batch Mode Quantity, use 35 for the Code I.D.
Note: 99 indicates all symbologies.

Step 5. Length

Specify what length (up to 9999 characters) of data will be acceptable for this symbology. Scan the four digit data length from the Programming Chart inside the back cover of this manual. For example, 50 characters is entered as 0050.
Note: 9999 indicates all lengths.

Step 6. Editor Commands

Refer to Data Format Editor Commands (page 5-3). Scan the symbols that represent the command you want to enter.
Step 7. Scan Save to save your data format, or Discard to exit without saving your changes.

DFMBK3.
Enter Data Format

Other Programming Selections

Clear One Data Format

This deletes one data format for one symbology. If you are clearing the primary format, scan $\mathbf{0}$ from the Programming Chart inside the back cover of this manual. If you are clearing an alternate format, scan $\mathbf{1 , 2}$, or $\mathbf{3}$, depending on the format you are clearing. Scan the Terminal Type and Code I.D. (see Symbology Charts on page A-1), and the bar code data length for the specific data format that you want to delete. All other formats remain unaffected.

Clear all Data Formats

This clears all data formats.
Save to exit and save your data format changes.
Discard to exit without saving any data format changes.

Terminal ID Table

Terminal	Model(s)	Terminal ID
USB	PC keyboard (HID)	124
	Mac Keyboard	125
	PC Keyboard (Japanese)	134
	Serial (COM driver required)	130
	HID POS	131
	USB SurePOS Handheld	128
	USB SurePOS Tabletop	129
Serial	RS232 TTL	000
	RS232 True	000
	RS485 (IBM-HHBCR 1+2, 46xx)	051
	PS2 compatibles	003
	AT compatibles	002

Data Format Editor Commands

When working with the Data Format Editor, a virtual cursor is moved along your input data string. The following commands are used to both move this cursor to different positions, and to select, replace, and insert data into the final output.

Send Commands

Send all characters

F1 Include in the output message all of the characters from the input message, starting from current cursor position, followed by an insert character. Syntax =F1xx where xx stands for the insert character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Send a number of characters

F2 Include in the output message a number of characters followed by an insert character. Start from the current cursor position and continue for "nn" characters or through the last character in the input message, followed by character "xx." Syntax = F2nnxx where nn stands for the numeric value (00-99) for the number of characters, and $x x$ stands for the insert character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

F2 Example: Send a number of characters

1234567B90ABCDEFGHIJ
Send the first 10 characters from the bar code above, followed by a carriage return. Command string: F2100D
F2 is the "Send a number of characters" command
10 is the number of characters to send
OD is the hex value for a CR
The data is output as: 1234567890

F2 and F1 Example: Split characters into 2 lines

Send the first 10 characters from the bar code above, followed by a carriage return, followed by the rest of the characters.

Command string: F2100DF10D
F2 is the "Send a number of characters" command
10 is the number of characters to send for the first line
$0 D$ is the hex value for a CR

F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
1234567890
ABCDEFGHIJ
<CR>

Send all characters up to a particular character

F3 Include in the output message all characters from the input message, starting with the character at the current cursor position and continuing to, but not including, the search character "ss," followed by an insert character. The cursor is moved forward to the "ss" character. Syntax = F3ssxx where ss stands for the search character's hex value for its ASCII code, and xx stands for the insert character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.
F3 Example: Send all characters up to a particular character

Using the bar code above, send all characters up to but not including " D," followed by a carriage return.
Command string: F3440D
F3 is the "Send all characters up to a particular character" command
44 is the hex value for a 'D"
$0 D$ is the hex value for a CR
The data is output as:
1234567890ABC
<CR>

Send all characters up to a string

B9 Include in the output message all characters from the input message, starting with the character at the current cursor position and continuing to, but not including, the search string "s...s." The cursor is moved forward to the beginning of the "s...s" string. Syntax = B9nnnns...s where nnnn stands for the length of the string, and s...s stands for the string to be matched. The string is made up of hex values for the characters in the string. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.
B9 Example: Send all characters up to a defined string

Using the bar code above, send all characters up to but not including "AB."
Command string: B900024142
B9 is the "Send all characters up to a string" command
0002 is the length of the string (2 characters)
41 is the hex value for A
42 is the hex value for B
The data is output as: 1234567890

Send all but the last characters

E9 Include in the output message all but the last "nn" characters, starting from the current cursor position. The cursor is moved forward to one position past the last input message character included. Syntax $=E 9 n n$ where nn stands for the numeric value (00-99) for the number of characters that will not be sent at the end of the message.

Insert a character multiple times

F4 Send "xx" character "nn" times in the output message, leaving the cursor in the current position. Syntax = F4xxnn where xx stands for the insert character's hex value for its ASCII code, and nn is the numeric value (00-99) for the number of times it should be sent. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

E9 and F4 Example: Send all but the last characters, followed by 2 tabs

Send all characters except for the last 8 from the bar code above, followed by 2 tabs.
Command string: E908F40902
E9 is the "Send all but the last characters" command
08 is the number of characters at the end to ignore
F4 is the "Insert a character multiple times" command
09 is the hex value for a horizontal tab
02 is the number of times the tab character is sent
The data is output as: 1234567890AB <tab><tab>

Insert a string

BA Send "ss" string of "nn" length in the output message, leaving the cursor in the current position. Syntax = BAnnnns...s where nnnn stands for the length of the string, and s...s stands for the string. The string is made up of hex values for the characters in the string. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.
B9 and BA Example: Look for the string "AB" and insert 2 asterisks (**)

1234567690AECDEFGHIJ
Using the bar code above, send all characters up to but not including "AB." Insert 2 asterisks at that point, and send the rest of the data with a carriage return after.
Command string: B900024142BA00022A2AF10D
B9 is the "Send all characters up to a string" command
0002 is the length of the string (2 characters)
41 is the hex value for A
42 is the hex value for B
BA is the "Insert a string" command
0002 is the length of the string to be added (2 characters)
2 A is the hex value for an asterisk (*)
2 A is the hex value for an asterisk (*)
F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
1234567890**ABCDEFGHIJ
<CR>

Insert symbology name

B3 Insert the name of the bar code's symbology in the output message, without moving the cursor. Only symbologies with a Honeywell ID are included (see Symbology Charts on page A-1). Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Insert bar code length

B4 Insert the bar code's length in the output message, without moving the cursor. The length is expressed as a numeric string and does not include leading zeroes.
B3 and B4 Example: Insert the symbology name and length

Send the symbology name and length before the bar code data from the bar code above. Break up these insertions with spaces. End with a carriage return.
Command string: B3F42001B4F42001F10D
B3 is the "Insert symbology name" command
F4 is the "Insert a character multiple times" command
20 is the hex value for a space
01 is the number of times the space character is sent
B4 is the "Insert bar code length" command
F4 is the "Insert a character multiple times" command
20 is the hex value for a space
01 is the number of times the space character is sent
F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
Code128 20 1234567890ABCDEFGHIJ
<CR>

Insert key strokes

B5 Insert a key stroke or combination of key strokes. Key strokes are dependent on your keyboard (see Keyboard Key References on page A-10). Any key can be inserted, including arrows and functions. Syntax = B5xxssnn where xx is the number of keys pressed (without key modifiers), ss is the key modifier from the table below, and nn is the key number from the Keyboard Key References, page A-10.

Key Modifiers

No Key Modifier	00
Shift Left	01
Shift Right	02
Alt Left	04
Alt Right	08
Control Left	10
Control Right	20

For example, B501021F inserts an "A" on a 104 key, U.S. style keyboard. B5 = the command, $01=$ number of keys pressed (without the key modifier), 02 is the key modifier for Shift Right, and 1F is the "a" key. If a lower case "a" were to be inserted, B501001F would be entered.
If there are three keystrokes, the syntax would change from B5xxssnn for one keystroke to B5xxssnnssnnssnn. An example that would insert "abc" is as follows: B503001F00320030F833.
Note: Key modifiers can be added together when needed. Example: Control Left+Shift Left = 11.

Move Commands

Move the cursor forward a number of characters

F5 Move the cursor ahead "nn" characters from current cursor position.
Syntax $=F 5 n n$ where $n n$ is the numeric value (00-99) for the number of characters the cursor should be moved ahead.

F5 Example: Move the cursor forward and send the data

Move the cursor forward 3 characters, then send the rest of the bar code data from the bar code above. End with a carriage return.
Command string: F503F10D
F5 is the "Move the cursor forward a number of characters" command
03 is the number of characters to move the cursor
F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
4567890ABCDEFGHIJ
<CR>

Move the cursor backward a number of characters

F6 Move the cursor back "nn" characters from current cursor position.
Syntax $=$ F6nn where $n n$ is the numeric value (00-99) for the number of characters the cursor should be moved back.
Move the cursor to the beginning
F7 Move the cursor to the first character in the input message. Syntax $=F 7$.
FE and F7 Example: Manipulate bar codes that begin with a 1

1234567B90AECDEFGHIJ
Search for bar codes that begin with a 1. If a bar code matches, move the cursor back to the beginning of the data and send 6 characters followed by a carriage return. Using the bar code above:
Command string: FE31F7F2060D
FE is the "Compare characters" command
31 is the hex value for 1
F7 is the "Move the cursor to the beginning" command
F2 is the "Send a number of characters" command
06 is the number of characters to send
$0 D$ is the hex value for a CR
The data is output as:
123456
<CR>

Move the cursor to the end

EA Move the cursor to the last character in the input message. Syntax $=E A$.

Search Commands

Search forward for a character

F8 Search the input message forward for "xx" character from the current cursor position, leaving the cursor pointing to the "xx" character. Syntax = F8xx where xx stands for the search character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

F8 Example: Send bar code data that starts after a particular character

Search for the letter " D " in bar codes and send all the data that follows, including the "D." Using the bar code above:

Command string: F844F10D

F8 is the "Search forward for a character" command
44 is the hex value for "D"
F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
DEFGHIJ
<CR>

Search backward for a character

F9 Search the input message backward for "xx" character from the current cursor position, leaving the cursor pointing to the "xx" character. Syntax = F9xx where xx stands for the search character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Search forward for a string

B0 Search forward for "s" string from the current cursor position, leaving cursor pointing to "s" string. Syntax = B0nnnnS where nnnn is the string length (up to 9999), and S consists of the ASCII hex value of each character in the match string. For example, B0000454657374 will search forward for the first occurrence of the 4 character string "Test."
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.
B0 Example: Send bar code data that starts after a string of characters

1234567B90ABCDEFGHIJ
Search for the letters "FGH" in bar codes and send all the data that follows, including "FGH." Using the bar code above:
Command string: B00003464748F10D
BO is the "Search forward for a string" command
0003 is the string length (3 characters)
46 is the hex value for "F"
47 is the hex value for " G "
48 is the hex value for "H"
F1 is the "Send all characters" command
$0 D$ is the hex value for a CR
The data is output as:
FGHIJ
<CR>

Search backward for a string

B1 Search backward for " s " string from the current cursor position, leaving cursor pointing to "s" string. Syntax = B1nnnnS where nnnn is the string length (up to 9999), and S consists of the ASCII hex value of each character in the match string. For example, B1000454657374 will search backward for the first occurrence of the 4 character string "Test."
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Search forward for a non-matching character

E6 Search the input message forward for the first non-"xx" character from the current cursor position, leaving the cursor pointing to the non-"xx" character. Syntax = E6xx where xx stands for the search character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

E6 Example: Remove zeroes at the beginning of bar code data

This example shows a bar code that has been zero filled. You may want to ignore the zeroes and send all the data that follows. E6 searches forward for the first character that is not zero, then sends all the data after, followed by a carriage return. Using the bar code above:

Command string: E630F10D

E6 is the "Search forward for a non-matching character" command
30 is the hex value for 0
F1 is the "Send all characters" command
$0 D$ is the hex value for a CR
The data is output as:
37692
<CR>

Search backward for a non-matching character

E7 Search the input message backward for the first non-"xx" character from the current cursor position, leaving the cursor pointing to the non-"xx" character. Syntax = E7xx where xx stands for the search character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Miscellaneous Commands

Suppress characters

FB Suppress all occurrences of up to 15 different characters, starting at the current cursor position, as the cursor is advanced by other commands. When the FC command is encountered, the suppress function is terminated. The cursor is not moved by the FB command.
Syntax = FBnnxxyy . .zz where nn is a count of the number of suppressed characters in the list, and xxyy .. zz is the list of characters to be suppressed.
FB Example: Remove spaces in bar code data

This example shows a bar code that has spaces in the data. You may want to remove the spaces before sending the data. Using the bar code above:
Command string: FB0120F10D
FB is the "Suppress characters" command
01 is the number of character types to be suppressed
20 is the hex value for a space
F1 is the "Send all characters" command
$0 D$ is the hex value for a CR
The data is output as:
34567890
<CR>

Stop suppressing characters

FC Disables suppress filter and clear all suppressed characters. Syntax $=F C$.
Replace characters
E4 Replaces up to 15 characters in the output message, without moving the cursor. Replacement continues until the E5 command is encountered. Syntax $=E 4 n n x x_{1} x x_{2} y y_{1} y y_{2} \ldots z z_{1} z z_{2}$ where $n n$ is the total count of the number of characters in the list (characters to be replaced plus replacement characters); x_{1} defines characters to be replaced and x_{2} defines replacement characters, continuing through z_{1} and $z z_{2}$.

E4 Example: Replace zeroes with CRs in bar code data

1234056780 . ВС
If the bar code has characters that the host application does not want included, you can use the E4 command to replace those characters with something else. In this example, you will replace the zeroes in the bar code above with carriage returns.
Command string: E402300DF10D
E 4 is the "Replace characters" command
02 is the total count of characters to be replaced, plus the replacement characters (0 is replaced by CR, so total characters =2)
30 is the hex value for 0
OD is the hex value for a CR (the character that will replace the 0)
F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
1234
5678
ABC
<CR>

Stop replacing characters

E5 Terminates character replacement. Syntax = E5.

Compare characters

FE Compare the character in the current cursor position to the character "xx." If characters are equal, move the cursor forward one position. Syntax = FExx where xx stands for the comparison character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Compare string

B2 Compare the string in the input message to the string "s." If the strings are equal, move the cursor forward past the end of the string. Syntax = B2nnnnS where nnnn is the string length (up to 9999), and S consists of the ASCII hex value of each character in the match string. For example, B2000454657374 will compare the string at the current cursor position with the 4 character string "Test."
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Check for a number

EC Check to make sure there is an ASCII number at the current cursor position. The format is aborted if the character is not numeric.

EC Example: Only output the data if the bar code begins with a number

If you want only data from bar codes that begin with a number, you can use EC to check for the number.

Command string: ECF10D

EC is the "Check for a number" command
F1 is the "Send all characters" command
$O D$ is the hex value for a $C R$

If this bar code is read

$$
\mathrm{AB} 1234
$$

the next data format, if there is one, will be used on the data. If there
is no other format, the format fails and the raw data is output as AB1234.
If this bar code is read: $\||\|\|\|\|\|\||\||||||||||| |$ the data is output as:

1234AB

1234AB
<CR>

Check for non-numeric character

ED Check to make sure there is a non-numeric ASCII character at the current cursor position. The format is aborted if the character is numeric.

ED Example: Only output the data if the bar code begins with a letter

If you want only data from bar codes that begin with a letter, you can use ED to check for the letter.

Command string: EDF10D

ED is the "Check for a non-numeric character" command
F1 is the "Send all characters" command
$0 D$ is the hex value for a CR

If this bar code is read, 1234AB
is no other format, the format fails and the raw data is output as 1234AB.
If this bar code is read: $\left\|\left\|\left\|\left\|\left\|_{\mathrm{AB} 1234}\right\|\right\|\right\|\right\|\right\|\|\|$ the data is output as:
AB1234
<CR>

Insert a delay

EF Inserts a delay of up to 49,995 milliseconds (in multiples of 5), starting from the current cursor position. Syntax = EFnnnn where nnnn stands for the delay in 5 ms increments, up to 9999 . This command can only be used with keyboard emulation.a

Discard Data

B8 Discards types of data. For example, you may want to discard Code 128 bar codes that begin with the letter A. In step 4 (page 5-1), select 6A (for Code 128), and in step 5, select 9999 (for all lengths). Enter FE41B8 to compare and discard Code 128 bar codes that begin with the letter A. Syntax = B8.
Note: The B8 command must be entered after all other commands.
The Data Format must be Required (see page 5-12) in order for the B8 command to work. If Data Format is On, but Not Required (page 5-12), bar code data that meets the B8 format is scanned and output as usual.
Because the data format needs to be On and Required (page 5-12) for the B8 command, you must input data formats for all bar codes you wish to discard as well as all bar codes you wish to output.
Other data format settings impact the B8 command. If Data Format Non-Match Error Tone is On (page 5-13), the scan engine emits an error tone. If Data format Non-Match Error Tone is Off, the code is disabled for reading and no tone is sounded.

Data Formatter

When Data Formatter is turned Off, the bar code data is output to the host as read, including prefixes and suffixes.

You may wish to require the data to conform to a data format you have created and saved. The following settings can be applied to your data format:

Data Formatter On, Not Required, Keep Prefix/Suffix

Scanned data is modified according to your data format, and prefixes and suffixes are transmitted.

Data Formatter On, Not Required, Drop Prefix/Suffix

Scanned data is modified according to your data format. If a data format is found for a particular symbol, those prefixes and suffixes are not transmitted. If a data format is not found for that symbol, the prefixes and suffixes are transmitted.

Data Format Required, Keep Prefix/Suffix

Scanned data is modified according to your data format, and prefixes and suffixes are transmitted. Any data that does not match your data format requirements generates an error tone and the data in that bar code is not transmitted. If you wish to process this type of bar code without generating an error tone, see Primary/Alternate Data Formats.

Data Format Required, Drop Prefix/Suffix

Scanned data is modified according to your data format. If a data format is found for a particular symbol, those prefixes and suffixes are not transmitted. Any data that does not match your data format requirements generates an error tone. If you wish to process this type of bar code without generating an error tone, see Primary/Alternate Data Formats.
Choose one of the following options. Default = Data Formatter On, Not Required, Keep Prefix/Suffix.

* Data Formatter On,

Not Required,
Keep Prefix/Suffix

DFM_ENS.
Data Formatter On,
Not Required,
Drop Prefix/Suffix
 Keep Prefix/Suffix

Primary/Alternate Data Formats

You can save up to four data formats, and switch between these formats. Your primary data format is saved under $\mathbf{0}$. Your other three formats are saved under 1, 2, and 3. To set your device to use one of these formats, scan one of the bar codes below.

ALTFNM2.
Data Format 2

ALTFNMB.
Data Format 3
$\square 2$

Symbologies

This programming section contains the following menu selections. Refer to Chapter 10 for settings and defaults.

- All Symbologies
- Aztec Code
- China Post (Hong Kong 2 of 5)
- Chinese Sensible (Han Xin) Code
- Codabar
- Codablock A
- Codablock F
- Code 11
- Code 128
- Code 32 Pharmaceutical (PARAF)
- Code 39
- Code 93
- Data Matrix
- EAN/JAN-13
- EAN/JAN-8
- GS1 Composite Codes
- GS1 DataBar Expanded
- GS1 DataBar Limited
- GS1 DataBar Omnidirectional
- GS1 Emulation
- GS1-128
- Interleaved 2 of 5
- Korea Post
- Matrix 2 of 5
- MaxiCode
- MicroPDF417
- MSI
- NEC 2 of 5
- Postal Codes - 2D
- Postal Codes - Linear
- PDF417
- GS1 DataBar Omnidirectional
- QR Code
- Straight 2 of 5 IATA (two-bar start/stop)
- Straight 2 of 5 Industrial (three-bar start/stop)
- TCIF Linked Code 39 (TLC39)
- UPC-A
- UPC-A
- UPC-A/EAN-13 with Extended Coupon Code
- UPC-E0
- UPC-E1

All Symbologies

If you want to decode all the symbologies allowable for your scanner, scan the All Symbologies On code. If on the other hand, you want to decode only a particular symbology, scan All Symbologies Off followed by the On symbol for that particular symbology.

Note: Scanner performance may reduce by scanning All Symobologies On. Only scan All Symbologies On when needed.

All Symbologies Off

Note: When All Symbologies On is scanned, 2D Postal Codes are not enabled. 2D Postal Codes must be enabled separately.

Message Length Description

You are able to set the valid reading length of some of the bar code symbologies. You may wish to set the same value for minimum and maximum length to force the scanner to read fixed length bar code data. This helps reduce the chances of a misread.
EXAMPLE: Decode only those bar codes with a count of 9-20 characters.
Min. length $=09 \mathrm{Max}$. length $=20$

EXAMPLE: Decode only those bar codes with a count of 15 characters.
Min. length $=15 \mathrm{Max}$. length $=15$
For a value other than the minimum and maximum message length defaults, scan the bar codes included in the explanation of the symbology, then scan the digit value of the message length and Save bar codes on the Programming Chart inside the back cover of this manual. The minimum and maximum lengths and the defaults are included with the respective symbologies.

Codabar

<Default All Codabar Settings>

 CBRDFT.

Codabar On/Off

Codabar Start/Stop Characters

Start/Stop characters identify the leading and trailing ends of the bar code. You may either transmit, or not transmit Start/ Stop characters. Default = Don't Transmit.

Codabar Check Character

Codabar check characters are created using different "modulos." You can program the scanner to read only Codabar bar codes with Modulo 16 check characters. Default = No Check Character.

No Check Character indicates that the scanner reads and transmits bar code data with or without a check character.
When Check Character is set to Validate and Transmit, the scanner will only read Codabar bar codes printed with a check character, and will transmit this character at the end of the scanned data.
When Check Character is set to Validate, but Don't Transmit, the unit will only read Codabar bar codes printed with a check character, but will not transmit the check character with the scanned data.

||
 CBPCLO 2

Validate Modulo 16 and Transmit

Codabar Concatenation

Codabar supports symbol concatenation. When you enable concatenation, the scanner looks for a Codabar symbol having a " D " start character, adjacent to a symbol having a "D" stop character. In this case the two messages are concatenated into one with the "D" characters omitted.

Select Require to prevent the scanner from decoding a single "D" Codabar symbol without its companion. This selection has no effect on Codabar symbols without Stop/Start D characters.

CBRCOTD.

* Off

Codabar Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=2-60$. Minimum Default $=4$, Maximum Default $=60$.

CBRMIN.
Minimum Message Length

Code 39

< Default All Code 39 Settings >

Code 39 On/Off

Code 39 Start/Stop Characters

Start/Stop characters identify the leading and trailing ends of the bar code. You may either transmit, or not transmit Start/ Stop characters. Default = Don't Transmit.

Code 39 Check Character

No Check Character indicates that the scanner reads and transmits bar code data with or without a check character.
When Check Character is set to Validate, but Don't Transmit, the unit only reads Code 39 bar codes printed with a check character, but will not transmit the check character with the scanned data.
When Check Character is set to Validate and Transmit, the scanner only reads Code 39 bar codes printed with a check character, and will transmit this character at the end of the scanned data. Default = No Check Character.

* No Check Character

Validate, but Don't Transmit

Validate and Transmit

Code 39 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=0-48$. Minimum Default $=0$, Maximum Default $=48$.

Maximum Message Length

Code 39 Append

This function allows the scanner to append the data from several Code 39 bar codes together before transmitting them to the host computer. When the scanner encounters a Code 39 bar code with the append trigger character(s), it buffers Code 39 bar codes until it reads a Code 39 bar code that does not have the append trigger. The data is then transmitted in the order in which the bar codes were read (FIFO). Default = Off.

On

Code 32 Pharmaceutical (PARAF)

Code 32 Pharmaceutical is a form of the Code 39 symbology used by Italian pharmacies. This symbology is also known as PARAF.

Note: Trioptic Code (page 6-30) must be turned off while scanning Code 32 Pharmaceutical codes.

On

Full ASCII

If Full ASCII Code 39 decoding is enabled, certain character pairs within the bar code symbol will be interpreted as a single character. For example: \$V will be decoded as the ASCII character SYN, and /C will be decoded as the ASCII character \#. Default = Off.

NUL \%U	DLE \$P	SP	SPACE	0	0	@	\%V	P	P		\%W	p	+P
SOH \$A	DC1 \$Q	!	/A	1	1	A	A	Q	Q	a	+A	q	+Q
STX \$B	DC2 \$R	"	/B	2	2	B	B	R	R	b	+B	r	+R
ETX \$C	DC3 \$S	\#	/C	3	3	C	C	S	S	c	+C	s	+S
EOT \$D	DC4 \$T	\$	/D	4	4	D	D	T	T	d	+D	t	+T
ENQ \$E	NAK \$U	\%	/E	5	5	E	E	U	U	e	+E	u	+U
ACK \$F	SYN \$V	\&	/F	6	6	F	F	V	V	f	+F	v	+V
BEL \$G	ETB \$W		/G	7	7	G	G	W	W	g	+G	w	+W
BS \$H	CAN \$X	(/H	8	8	H	H	X	X	h	+H	x	+X
HT \$	EM \$Y)	/I	9	9	1	1	Y	Y	i	+1	y	+Y
LF \$J	SUB \$Z	*	/J		/Z	J	J	Z	Z	j	+J	z	+Z
VT \$K	ESC \%A	+	/K	,	\%F	K	K	[\%K	k	+K	\{	\%P
FF \$L	FS \%B		/L	<	\%G	L	L	\}	\%L	I	+L	I	\%Q
CR \$M	GS \%C	-	-	$=$	\%H	M	M]	\%M	m	+M	\}	\%R
SO \$N	RS \%D		.	>	\%	N	N	\wedge	\%N	n	+N	\sim	\%S
SI \$O	US \%E	/	/O	?	\%J	0	0	-	\%O	\bigcirc	+O	DE	\%T

Character pairs / M and $/ \mathrm{N}$ decode as a minus sign and period respectively.
Character pairs /P through / Y decode as 0 through 9.

Code 39 Code Page

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A-8), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

Interleaved 2 of 5

< Default All Interleaved 2 of 5 Settings >

Interleaved 2 of 5 On/Off

Check Digit

No Check Digit indicates that the scanner reads and transmits bar code data with or without a check digit.
When Check Digit is set to Validate, but Don't Transmit, the unit only reads Interleaved 2 of 5 bar codes printed with a check digit, but will not transmit the check digit with the scanned data.
When Check Digit is set to Validate and Transmit, the scanner only reads Interleaved 2 of 5 bar codes printed with a check digit, and will transmit this digit at the end of the scanned data. Default $=$ No Check Digit.

Interleaved 2 of 5 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=80$.

Minimum Message Length

125 MAX
Maximum Message Length

NEC 2 of 5

< Default All NEC 2 of 5 Settings >

NEC 2 of 5 On/Off

 N25ENA1.
 * On

Check Digit

No Check Digit indicates that the scanner reads and transmits bar code data with or without a check digit.
When Check Digit is set to Validate, but Don't Transmit, the unit only reads NEC 2 of 5 bar codes printed with a check digit, but will not transmit the check digit with the scanned data.
When Check Digit is set to Validate and Transmit, the scanner only reads NEC 2 of 5 bar codes printed with a check digit, and will transmit this digit at the end of the scanned data. Default $=$ No Check Digit.

N 25 Cl 21
Validate, but Don't Transmit

6-8

NEC 2 of 5 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=80$.

Minimum Message Length

Maximum Message Length

Code 93

< Default All Code 93 Settings >

Code 93 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=0-80$. Minimum Default $=0$, Maximum Default $=80$.

C93M|N.
Minimum Message Length

Code 93 Append

This function allows the scanner to append the data from several Code 93 bar codes together before transmitting them to the host computer. When this function is enabled, the scanner stores those Code 93 bar codes that start with a space (excluding the start and stop symbols), and does not immediately transmit the data. The scanner stores the data in the order in which the bar codes are read, deleting the first space from each. The scanner transmits the appended data when it reads a Code 93 bar code that starts with a character other than a space. Default = Off.

Code 93 Code Page

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A-8), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

Straight 2 of 5 Industrial (three-bar start/stop)

<Default All Straight 2 of 5 Industrial Settings>

Straight 2 of 5 Industrial On/Off

 R25ENA1.
 On

Straight 2 of 5 Industrial Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-48$. Minimum Default $=4$, Maximum Default $=48$.

Minimum Message Length

Maximum Message Length

Straight 2 of 5 IATA (two-bar start/stop)

<Default All Straight 2 of 5 IATA Settings>

Straight 2 of 5 IATA On/Off

 A25ENA1.
 On

Straight 2 of 5 IATA Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-48$. Minimum Default $=4$, Maximum Default $=48$.

Minimum Message Length

Maximum Message Length

Matrix 2 of 5

<Default All Matrix 2 of 5 Settings>

Matrix 2 of 5 On/Off

 On

Matrix 2 of 5 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-80$. Minimum Default $=4$, Maximum Default $=80$.

Code 11

<Default All Code 11 Settings>

Check Digits Required

This option sets whether 1 or 2 check digits are required with Code 11 bar codes. Default = Two Check Digits.

C 11 CK 1

* Two Check Digits

Code 11 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-80$. Minimum Default $=4$, Maximum Default $=80$.

Minimum Message Length

Maximum Message Length

Code 128

<Default All Code 128 Settings>

Code 128 On/Off

 128ENA.

* On

ISBT 128 Concatenation

In 1994 the International Society of Blood Transfusion (ISBT) ratified a standard for communicating critical blood information in a uniform manner. The use of ISBT formats requires a paid license. The ISBT 128 Application Specification describes 1) the critical data elements for labeling blood products, 2) the current recommendation to use Code 128 due to its high degree of security and its space-efficient design, 3) a variation of Code 128 that supports concatenation of neighboring symbols, and 4) the standard layout for bar codes on a blood product label. Use the bar codes below to turn concatenation on or off. Default =Off.

Code 128 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=0-80$. Minimum Default $=0$, Maximum Default $=80$.

128 MIN .
Minimum Message Length

Maximum Message Length

Code 128 Append

This function allows the scanner to append the data from several Code 128 bar codes together before transmitting them to the host computer. When the scanner encounters a Code 128 bar code with the append trigger character(s), it buffers Code 128 bar codes until it reads a Code 128 bar code that does not have the append trigger. The data is then transmitted in the order in which the bar codes were read (FIFO). Default $=$ On.

Code 128 Code Page

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A-8), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

GS1-128
<Default All GS1-128 Settings>

GS1-128 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-80$. Minimum Default $=1$, Maximum Default $=80$.

Minimum Message Length

Maximum Message Length

UPC-A

Note: To convert UPC-A bar codes to EAN-13, see Convert UPC-A to EAN-13 on page 6-23.

UPC-A Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data or not. Default $=$ On.

UPC-A Number System

The numeric system digit of a U.P.C. symbol is normally transmitted at the beginning of the scanned data, but the unit can be programmed so it will not transmit it. Default $=$ On.

UPC-A Addenda

This selection adds 2 or 5 digits to the end of all scanned UPC-A data.
Default $=$ Off for both 2 Digit and 5 Digit Addenda.

2 Digit Addenda On

UPAAD51.
5 Digit Addenda On

UPC-A Addenda Required

When Required is scanned, the scanner will only read UPC-A bar codes that have addenda. You must then turn on a 2 or 5 digit addenda listed on page 6-18. Default $=$ Not Required.

UPC-A Addenda Separator

When this feature is on, there is a space between the data from the bar code and the data from the addenda. When turned off, there is no space. Default $=$ On.

UPC-A/EAN-13 with Extended Coupon Code

Use the following codes to enable or disable UPC-A and EAN-13 with Extended Coupon Code. When left on the default setting (Off), the scanner treats Coupon Codes and Extended Coupon Codes as single bar codes.
If you scan the Allow Concatenation code, when the scanner sees the coupon code and the extended coupon code in a single scan, it transmits both as one symbology. Otherwise, it transmits the first coupon code it reads.
If you scan the Require Concatenation code, the scanner must see and read the coupon code and extended coupon code in a single read to transmit the data. No data is output unless both codes are read. Default = Off.

Coupon GS1 DataBar Output

If you scan coupons that have both UPC and GS1 DataBar codes, you may wish to scan and output only the data from the GS1 DataBar code. Scan the GS1 Output On code below to scan and output only the GS1 DataBar code data. Default = GS1 Output Off.

UPC-EO
<Default All UPC-E Settings>

UPC-EO On/Off

Most U.P.C. bar codes lead with the 0 number system. To read these codes, use the UPC-EO On selection. If you need to read codes that lead with the 1 number system, use UPC-E1 (page 6-22). Default = On.

UPC-EO Expand

UPC-E Expand expands the UPC-E code to the 12 digit, UPC-A format. Default = Off.

On

UPC-EO Addenda Required

When Required is scanned, the scanner will only read UPC-E bar codes that have addenda. Default $=$ Not Required.

UPC-EO Addenda Separator

When this feature is $\mathbf{O n}$, there is a space between the data from the bar code and the data from the addenda. When turned Off, there is no space. Default $=$ On.

UPC-E0 Check Digit

Check Digit specifies whether the check digit should be transmitted at the end of the scanned data or not. Default =On.

Off

UPC-EO Leading Zero

This feature allows the transmission of a leading zero (0) at the beginning of scanned data. To prevent transmission, scan Off. Default = On.

UPC-EO Addenda

This selection adds 2 or 5 digits to the end of all scanned UPC-E data. Default $=$ Off for both 2 Digit and 5 Digit Addenda.

UPC-E1

Most U.P.C. bar codes lead with the 0 number system. For these codes, use UPC-E0 (page 6-20). If you need to read codes that lead with the 1 number system, use the UPC-E1 On selection. Default = Off.

UPEEN11.
UPC-E1 On

* UPC-E1 Off

EAN/JAN-13 On/Off

 E13ENA.
 * On

Convert UPC-A to EAN-13

When UPC-A Converted to EAN-13 is selected, UPC-A bar codes are converted to 13 digit EAN-13 codes by adding a zero to the front. When Do not Convert UPC-A is selected, UPC-A codes are read as UPC-A.

UPC-A Converted to EAN-13

EAN/JAN-13 Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data or not. Default $=$ On.

EAN/JAN-13 Addenda

This selection adds 2 or 5 digits to the end of all scanned EAN/JAN-13 data. Default = Off for both 2 Digit and 5 Digit Addenda.

EAN/JAN-13 Addenda Required

When Required is scanned, the scanner will only read EAN/JAN-13 bar codes that have addenda. Default = Not Required.

EAN/JAN-13 Addenda Separator

When this feature is $\mathbf{O n}$, there is a space between the data from the bar code and the data from the addenda. When turned Off, there is no space. Default $=$ On.

Note: If you want to enable or disable EAN13 with Extended Coupon Code, refer to UPC-A/EAN-13 with Extended Coupon Code (page 6-19).

ISBN Translate

When On is scanned, EAN-13 Bookland symbols are translated into their equivalent ISBN number format. Default = Off.

EAN/JAN-8

<Default All EAN/JAN-8 Settings>

EAN/JAN-8 On/Off

EAN/JAN-8 Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data or not. Default $=$ On.

EAN/JAN-8 Addenda

This selection adds 2 or 5 digits to the end of all scanned EAN/JAN-8 data. Default = Off for both 2 Digit and 5 Digit Addenda.

EAN/JAN-8 Addenda Required

When Required is scanned, the scanner will only read EAN/JAN-8 bar codes that have addenda. Default = Not Required.

* Not Required

EAN/JAN-8 Addenda Separator

When this feature is $\mathbf{O n}$, there is a space between the data from the bar code and the data from the addenda. When turned Off, there is no space. Default $=$ On.

MSI

<Default All MSI Settings>

MSI On/Off

MSI Check Character

Different types of check characters are used with MSI bar codes. You can program the scanner to read MSI bar codes with Type 10 check characters. Default = Validate Type 10, but Don't Transmit.
When Check Character is set to Validate Type 10/11 and Transmit, the scanner will only read MSI bar codes printed with the specified type check character(s), and will transmit the character(s) at the end of the scanned data.
When Check Character is set to Validate Type 10/11, but Don't Transmit, the unit will only read MSI bar codes printed with the specified type check character(s), but will not transmit the check character(s) with the scanned data.

* Validate Type 10, but Don't Transmit

Disable MSI Check Characters

MSI Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=4-48$. Minimum Default $=4$, Maximum Default $=48$.

Minimum Message Length

6-28

GS1 DataBar Omnidirectional

< Default All GS1 DataBar Omnidirectional Settings >

RSSDFT.
GS1 DataBar Omnidirectional On/Off

GS1 DataBar Limited
< Default All GS1 DataBar Limited Settings >

GS1 DataBar Limited On/Off

GS1 DataBar Expanded

< Default All GS1 DataBar Expanded Settings >

 RSEDFT.

GS1 DataBar Expanded On/Off

RSEENAD.
Off

GS1 DataBar Expanded Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=4-74$. Minimum Default $=4$, Maximum Default $=74$.

Minimum Message Length

Codablock A

<Default All Codablock A Settings>

Maximum Message Length

Codablock A On/Off

Codablock A Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-600$. Minimum Default $=1$, Maximum Default $=600$.

Maximum Message Length

Codablock F

Codablock F Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-2048$. Minimum Default $=1$, Maximum Default $=2048$.

Minimum Message Length

Maximum Message Length

PDF417

< Default All PDF417 Settings >

PDF417 On/Off

PDFENA.

* On

PDF417 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-2750$. Minimum Default $=1$, Maximum Default $=2750$.

Minimum Message Length

MacroPDF417

MacroPDF417 is an implementation of PDF417 capable of encoding very large amounts of data into multiple PDF417 bar codes. When this selection is enabled, these multiple bar codes are assembled into a single data string. Default =On.

MicroPDF417

< Default All MicroPDF417 Settings >

 MPDDFT.

MicroPDF417 On/Off

 MPDENA1.
 On

MicroPDF417 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-366$. Minimum Default $=1$, Maximum Default $=366$.

Minimum Message Length

Maximum Message Length

GS1 Composite Codes

Linear codes are combined with a unique 2D composite component to form a new class called GS1 Composite symbology. GS1 Composite symbologies allow for the co-existence of symbologies already in use. Default = Off.

UPC/EAN Version

Scan the UPC/EAN Version On bar code to decode GS1 Composite symbols that have a U.P.C. or an EAN linear component. (This does not affect GS1 Composite symbols with a GS1-128 or GS1 linear component.) Default = UPC/EAN Version Off.

* UPC/EAN Version Off

Note: If you scan coupons that have both UPC and GS1 DataBar codes, you may wish to scan and output only the data from the GS1 DataBar code. See Coupon GS1 DataBar Output (page 6-20) for further information.

GS1 Composite Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-2435$. Minimum Default $=1$, Maximum Default $=2435$.

Minimum Message Length

Maximum Message Length

GS1 Emulation

The scanner can automatically format the output from any GS1 data carrier to emulate what would be encoded in an equivalent GS1-128 or GS1 DataBar symbol. GS1 data carriers include UPC-A and UPC-E, EAN-13 and EAN-8, ITF-14, GS1-128, and GS1-128 DataBar and GS1 Composites. (Any application that accepts GS1 data can be simplified since it only needs to recognize one data carrier type.)
If GS1-128 Emulation is scanned, all retail codes (U.P.C., UPC-E, EAN8, EAN13) are expanded out to 16 digits. If the AIM ID is enabled, the value will be the GS1-128 AIM ID,]C1 (see Symbology Charts on page A-1).
If GS1 DataBar Emulation is scanned, all retail codes (U.P.C., UPC-E, EAN8, EAN13) are expanded out to 16 digits. If the AIM ID is enabled, the value will be the GS1-DataBar AIM ID,]em (see Symbology Charts on page A-1).
If GS1 Code Expansion Off is scanned, retail code expansion is disabled, and UPC-E expansion is controlled by the UPC-E0 Expand (page 6-20) setting. If the AIM ID is enabled, the value will be the GS1-128 AIM ID,]C1 (see Symbology Charts on page A-1).
If EAN8 to EAN13 Conversion is scanned, all EAN8 bar codes are converted to EAN13 format.
Default $=$ GS1 Emulation Off.

EANEMU1.
GS1-128 Emulation

TCIF Linked Code 39 (TLC39)

This code is a composite code since it has a Code 39 linear component and a MicroPDF417 stacked code component. All bar code readers are capable of reading the Code 39 linear component. The MicroPDF417 component can only be decoded if TLC39 On is selected. The linear component may be decoded as Code 39 even if TLC39 is off. Default = Off.

QR Code

QR Code On/Off

This selection applies to both QR Code and Micro QR Code.

QR Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-7089$. Minimum Default $=1$, Maximum Default $=7089$.

QR Code Append

This function allows the scanner to append the data from several QR Code bar codes together before transmitting them to the host computer. When the scanner encounters an QR Code bar code with the append trigger character(s), it buffers the number of QR Code bar codes determined by information encoded in those bar codes. Once the proper number of codes is reached, the data is output in the order specified in the bar codes. Default = On.

Off

QR Code Page

QR Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A-8), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

Data Matrix

< Default All Data Matrix Settings >

Data Matrix On/Off

Data Matrix Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-3116$. Minimum Default $=1$, Maximum Default $=3116$.

Minimum Message Length

Maximum Message Length

Data Matrix Append

This function allows the scanner to append the data from several Data Matrix bar codes together before transmitting them to the host computer. When the scanner encounters an Data Matrix bar code with the append trigger character(s), it buffers the number of Data Matrix bar codes determined by information encoded in those bar codes. Once the proper number of codes is reached, the data is output in the order specified in the bar codes. Default $=$ On.

Off

Data Matrix Code Page

Data Matrix Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar
codes were created (see ISO 2022/ISO 646 Character Replacements on page A-8), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

MaxiCode

< Default All MaxiCode Settings >

MaxiCode On/Off

MaxiCode Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-150$. Minimum Default $=1$, Maximum Default $=150$.

Maximum Message Length

Aztec Code

< Default All Aztec Code Settings >

Aztec Code On/Off

 AZTENA.
 * On

Aztec Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-3832$. Minimum Default $=1$, Maximum Default $=3832$.

Minimum Message Length

Aztec Append

This function allows the scanner to append the data from several Aztec bar codes together before transmitting them to the host computer. When the scanner encounters an Aztec bar code with the append trigger character(s), it buffers the number of Aztec bar codes determined by information encoded in those bar codes. Once the proper number of codes is reached, the data is output in the order specified in the bar codes. Default =On.

Aztec Code Page

Aztec Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar
codes were created (see ISO 2022/ISO 646 Character Replacements on page A-8), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

Chinese Sensible (Han Xin) Code

< Default All Han Xin Settings >

Han Xin Code On/Off

Han Xin Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-7833$. Minimum Default $=1$, Maximum Default $=7833$.

Minimum Message Length

Maximum Message Length

Postal Codes - 2D

The following lists the possible 2D postal codes, and 2D postal code combinations that are allowed. Only one 2D postal code selection can be active at a time. If you scan a second 2D postal code selection, the first selection is overwritten. Default = 2D Postal Codes Off.

Single 2D Postal Codes:

POSTALSO.
Canadian Post On

POSTAL4. KIX Post On

Planet Code On
Also see Planet Code
Check Digit, page 6-44.

POSTALG.
Postnet On
Also see Postnet Check
Digit, page 6-44.

Combination 2D Postal Codes:

Intelligent Mail Bar Code and Postnet with B and B' Fields On

POSTAL17
Postal-4i and
Intelligent Mail Bar Code On

POSTAL18

POSTAL13.
Planet Code and
Postal-4i On

POSTAL15
Planet Code and Intelligent Mail Bar Code On

Planet Code,
Postnet, and
Intelligent Mail Bar Code On

Postnet,
Postal-4i, and
Intelligent Mail Bar Code On

POSTAL28.
Planet Code,

Planet Code Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of Planet Code data. Default = Don't Transmit.

PLNCKO

* Don't Transmit Check Digit

Postnet Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of Postnet data. Default = Don't Transmit.

Australian Post Interpretation

This option controls what interpretation is applied to customer fields in Australian 4-State symbols.
Bar Output lists the bar patterns in "0123" format.
Numeric \mathbf{N} Table causes that field to be interpreted as numeric data using the N Table.
Alphanumeric C Table causes the field to be interpreted as alphanumeric data using the C Table. Refer to the Australian Post Specification Tables.

Combination \mathbf{C} and \mathbf{N} Tables causes the field to be interpreted using either the \mathbf{C} or \mathbf{N} Tables.

AUSINTS.
Combination C and N Tables

Postal Codes - Linear

The following lists linear postal codes. Any combination of linear postal code selections can be active at a time.

China Post (Hong Kong 2 of 5)

<Default All China Post (Hong Kong 2 of 5) Settings>

China Post (Hong Kong 2 of 5) On/Off

China Post (Hong Kong 2 of 5) Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=80$.

$\mathrm{CPCM} \| \mathrm{N}$.
Minimum Message Length

CPCMAX
Maximum Message Length

Korea Post

<Default All Korea Post Settings>

Korea Post

Korea Post Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=48$.

Maximum Message Length

Korea Post Check Digit

This selection allows you to specify whether the check digit should be transmitted. Default = Don't Transmit.

* Don't Transmit Check Digit

The scan engine is like a digital camera in the way it captures, manipulates, and transfers images. The following commands allow you to alter the way the scan engine performs these functions.
Note: If you are using the scan engine in a stand, you must set the In-Stand Sensor Mode to Off in order to take images (see Presentation Centering on page 3-6).

Single-Use Basis

Imaging Commands with their modifiers send instructions to the scan engine on a single-use basis, and take effect for a single image capture. Once that capture is complete, the scan engine reverts to its imaging default settings. If you want to permanently change a setting, you must use the serial default commands (see Chapter 10). When the serial default command is used, that selection becomes the new, permanent setting for the scan engine.

Command Syntax

Multiple modifiers and commands can be issued within one sequence. If additional modifiers are to be applied to the same command, just add the modifiers to that command. For example, to add 2 modifiers to the Image Snap command, such as setting the Imaging Style to 1P and the Wait for Trigger to 1T, you would enter IMGSNP1P1T.
Note: After processing an image capture command (IMGSNP), you must follow it with an IMGSHP command if you want to see it on your terminal.

To add a command to a sequence, each new command is separated with a semicolon. For example, to add the Image Ship command to the above sequence, you would enter IMGSNP1P1T;IMGSHP.
The imaging commands are:
Image Snap - IMGSNP (page 7-1)
Image Ship - IMGSHP (page 7-3)
The modifiers for each of these commands follow the command description.
Note: The images included with each command description are examples only. The results you achieve may be different from those included in this manual. The quality of the output you receive will vary depending on lighting, quality of the initial image/object being captured, and distance of the scan engine from the image/object. To achieve a high quality image, it is recommended that you position your scan engine 4-6" (10.2-15.2 cm) away from the image/object you are capturing.

Step 1 - Take a Picture Using IMGSNP

Image Snap - IMGSNP

An image is taken whenever the hardware button is pressed, or when the Image Snap (IMGSNP) command is processed.
The image snap command has many different modifiers that can be used to change the look of the image in memory. Any number of modifiers may be appended to the IMGSNP command. For example, you can use the following command to snap an image, increase the gain, and have the beeper sound once the snap is complete: IMGSNP2G1B

IMGSNP Modifiers

P-Imaging Style

This sets the Image Snap style.
OP Decoding Style. This processing allows a few frames to be taken until the exposure parameters are met. The last frame is then available for further use.
1P Photo Style (default). This mimics a simple digital camera, and results in a visually optimized image.
2P Manual Style. This is an advanced style that should only be used by an experienced user. It allows you the most freedom to set up the scan engine, and has no auto-exposure.

B - Beeper

Causes a beep to sound after an image is snapped.
OB No beep (default)

1B Sounds a beep when the image is captured.

T-Wait for Trigger

Waits for a hardware button push before taking the image. This is only available when using Photo Style (1P).
OT Takes image immediately (default)
1T Waits for a button push, then takes the image

L-LED State

Determines if the LEDs should be on or off, and when. Ambient illumination (OL) is preferred for taking pictures of color documents, such as ID cards, especially when the scan engine is in a stand. LED illumination (1L) is preferred when the scanner is handheld. LED State is not available when using Decoding Style (OP).

OL LEDs off (default)
1L LEDs on

E-Exposure

Exposure is used in Manual Style only (2P), and allows you to set the exposure time. This is similar to setting a shutter speed on a camera. The exposure time determines how long the scanner takes to record an image. On a bright day, exposure times can be very short because plenty of light is available to help record an image. At nighttime, exposure time can increase dramatically due to the near absence of light. Units are 127 microseconds. (Default $=7874$)
nE Range: 1-7874

Example of Exposure at 7874E with fluorescent lighting:

Example of Exposure at 100E with fluorescent lighting:

G-Gain

Gain is used in Manual Style only (2P). Like a volume control, the gain modifier boosts the signal and multiplies the pixel value. As you increase the gain, the noise in an image is also amplified.

40G Medium gain
64G Heavy gain (default)
96G Maximum gain

Example of Gain at 40G:

Example of Gain at 64G:

Example of Gain at 96G:

W - Target White Value

Sets the target for the median grayscale value in the captured image. For capturing close-up images of high contrast documents, a lower setting, such as 75, is recommended. Higher settings result in longer exposure times and brighter images, but if the setting is too high, the image may be overexposed. Target White Value is only available when using Photo Style (1P). $\quad($ Default $=90)$
nW Range: 0-255

D - Delta for Acceptance

This sets the allowable range for the white value setting (see W - Target White Value). Delta is only available when using Photo Style (1P). (Default = 25)
nD Range: 0-255

U - Update Tries

This sets the maximum number of frames the scan engine should take to reach the D - Delta for Acceptance. Update Tries is only available when using Photo Style (1P). (Default = 6)
$n \cup$ Range: 0-10

$\%$ - Target Set Point Percentage

Sets the target point for the light and dark values in the captured image. A setting of 75% means 75% of the pixels are at or below the target white value, and 25% of the pixels are above the target white value. Altering this setting from the default is not recommended under normal circumstances. To alter grayscale values, W - Target White Value should be used.
(Default = 50)
n\% Range: 1-99

Example of Target Set Point Percentage at 97%.	Example of Target Set Point	Example of Target Set Point
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Curabitur massa. Lorem ipsum dolor sit anct, conseteturer adipising ctit: Donec interdum volutput arcu. Proin sed tupis. Donec	Lorem ipuum dolor sit ame, consectcture adipiscing dit. Curbbitur massa. Lorem ipsum dolor sis ane, consectetuer adipisinge elit Donec interdum volutupu a rou. Proin sced dupisis Donec	Lorem ipsum dolor sit amet, consectetuer adipi. ssing elit. Curabiur mass. Lorem ipsum dolor sit mme, consestetuer adipising titi. Donee interdum voluppat arcu. Proin sed turpis. Donec

Step 2 - Ship a Picture Using IMGSHP

Image Ship - IMGSHP

An image is taken whenever the button is pressed, or when the Image Snap (IMGSNP) command is processed. The last image is always stored in memory. You can "ship" the image by using the IMGSHP command.
The image ship commands have many different modifiers that can be used to change the look of the image output. Modifiers affect the image that is transmitted, but do not affect the image in memory. Any number of modifiers may be appended to the IMGSHP command. For example, you can use the following command to snap and ship a bitmap image with gamma correction and document image filtering: IMGSNP;IMGSHP8F75K26U

IMGSHP Modifiers

A - Infinity Filter

Enhances pictures taken from very long distances (greater than 10 feet or $3 m$). The Infinity Filter should not be used with IMGSNP Modifiers (page 7-1).

0A Infinity filter off (default)
1A Infinity filter on

Example of Infinity Filter off (OA)
from approximately 12 feet
(3.66m) away:

Example of Infinity Filter on (1A)
from approximately 12 feet (3.66 m) away:

C - Compensation

Flattens the image to account for variations in illumination across the image.
OC Compensation disabled (default)
1C Compensation enabled
Example of Compensation at 0C: Example of Compensation at 1C:

D - Pixel Depth

Indicates the number of bits per pixel in the transmitted image (KIM or BMP format only).
8D 8 bits per pixel, grayscale image (default)
1D 1 bit per pixel, black and white image

E-Edge Sharpen

An edge sharpen filter cleans up the edges of an image, making it look cleaner and sharper. While edge sharpening does make the image look cleaner, it also removes some fine detail from the original image. The strength of the edge sharpen filter can be entered from 1 to 24 . Entering a $23 E$ gives the sharpest edges, but also increases noise in the image.

OE Don't sharpen image (default)
14E Apply edge sharpen for typical image
ne Apply edge sharpen using strength $n(n=1-24)$

F - File Format

Indicates the desired format for the image.
OF KIM format
1F TIFF binary
2F TIFF binary group 4, compressed
3F TIFF grayscale
4F Uncompressed binary (upper left to lower right, 1 pixel/bit, 0 padded end of line)
5F Uncompressed grayscale (upper left to lower right, bitmap format)
6F JPEG image (default)
8F BMP format (lower right to upper left, uncompressed)
15F BMP Uncompressed raw image

H - Histogram Stretch

Increases the contrast of the transmitted image. Not available with some image formats.
OH No stretch (default)
1H Histogram stretch
Example of Histogram Stretch at $0 \mathrm{H}: \quad$ Example of Histogram Stretch at 1H:

I - Invert Image

Invert image is used to rotate the image around the X or Y axis.
1ix Invert around the X axis (flips picture upside down)

1iy Invert around the Y axis (flips picture left to right)

IF- Noise Reduction

Used to reduce the salt and pepper noise in an image.
Oif No salt and pepper noise reduction (default)
1 if Salt and pepper noise reduction
Example of Noise Reduction Off (Oif):

Example of Noise Reduction On (1if):

IR - Image Rotate

Oir Image as snapped (rightside up) (default)
1ir Rotate image 90 degrees to the right
2ir Rotate image 180 degrees (upside down)
3ir Rotate image 90 degrees to the left

Example of Image Rotate set to Oir:

Example of Image Rotate set to 1ir:

Example of Image Rotate set to 2 ir :

Example of Image Rotate set to 3ir:

J - JPEG Image Quality

Sets the desired quality when the JPEG image format is selected. Higher numbers result in higher quality, but larger files. Smaller numbers result in greater amounts of lossy compression, faster transmission times, lower quality, but smaller files. (Default = 50)
$n J$ Image is compressed as much as possible while preserving quality factor of $n(n=0-100)$
OJ worst quality (smallest file)
100Jbest quality (largest file)

K - Gamma Correction

Gamma measures the brightness of midtone values produced by the image. You can brighten or darken an image using gamma correction. A higher gamma correction yields an overall brighter image. The lower the setting, the darker the image. The optimal setting for text images is 50 K .

OK Gamma correction off (default)
50K Apply gamma correction for brightening typical document image
$n K$ Apply gamma correction factor $n(n=0-1,000)$

L, R, T, B, M - Image Cropping

Ships a window of the image by specifying the left, right, top, and bottom pixel coordinates. Device columns are numbered 0 through 1279, and device rows are numbered 0 through 959.
$n \mathrm{~L}$ The left edge of the shipped image corresponds to column n of the image in memory. Range: 000-843. (Default = 0)
$n \mathrm{R}$ The right edge of the shipped image corresponds to column $n-1$ of the image in memory. Range: 000-843. (Default = all columns)
$n T$ The top edge of the shipped image corresponds to row n of the image in memory. Range: 000-639. (Default $=0$)
$n \mathrm{~B}$ The bottom edge of the shipped image corresponds to row $n-1$ of the image in memory. Range: 000-639. (Default = all rows)

Alternately, specify the number of pixels to cut from the outside margin of the image; thus only the center pixels are transmitted.
$n \mathrm{M}$ Margin: cut n columns from the left, $n+1$ columns from the right, n rows from the top, and $n+1$ rows from the bottom of the image. Ship the remaining center pixels. Range: 0-238. (Default $=0$, or full image)

Example of Image Crop set to 238M:

P - Protocol

Used for shipping an image. Protocol covers two features of the image data being sent to the host. It addresses the protocol used to send the data (Hmodem, which is an Xmodem 1K variant that has additional header information), and the format of the image data that is sent.

OP None (raw data)
2P None (default for USB)
3P Hmodem compressed (default for RS232)
4P Hmodem

S - Pixel Ship

Pixel Ship sizes an image in proportion to its original size. It decimates the image by shipping only certain, regularly spaced pixels. For example, $\mathbf{4 S}$ would transmit every fourth pixel from every fourth line. The smaller number of pixels shipped, the smaller the image, however, after a certain point the image becomes unusable.

1S ship every pixel (default)
2S ship every 2nd pixel, both horizontally and vertically
ship every 3rd pixel, both horizontally and vertically

Example of Pixe
Ship set to 2 S :

Example of Pixel Ship set to 3S:

U - Document Image Filter

Allows you to input parameters to sharpen the edges and smooth the area between the edges of text in an image. This filter should be used with gamma correction (see page 7-7), with the scan engine in a stand, and the image captured using the command:

IMGSNP1P0L168W90\%32D
This filter typically provides better JPEG compression than the standard E - Edge Sharpen command (see page 7-9). This filter also works well when shipping pure black and white images (1 bit per pixel). The optimal setting is 26 U .

OU Document image filter off (default)
26 U Apply document image filter for typical document image
$n \mathrm{U}$ Apply document image filter using grayscale threshold n . Use lower numbers when the image contrast is lower. 1 U will have a similar effect to setting E - Edge Sharpen (page 7-5) to 22e. Range: 0-255.

V - Blur Image

Smooths transitions by averaging the pixels next to the hard edges of defined lines and shaded areas in an image.
OV Don't blur (default)
1V Blur

Example of Blur Image Off (0V):

Example of Blur Image On (1V):

W - Histogram Ship

A histogram gives a quick picture of the tonal range of an image, or key type. A low-key image has detail concentrated in the shadows; a high-key image has detail concentrated in the highlights; and an average-key image has detail concentrated in the midtones. This modifier ships the histogram for an image.

OW Don't ship histogram (default)

Image used for histogram:

Histogram of image at left:

Image Size Compatibility

If you have applications that expect an image ship to return exactly 640×480 pixels, scan the Force VGA Resolution bar codeorts imaging command processing (IMGSHP, IMGSNP) so that EZConfig-Scanning (see page 9-3) and other applications are. Default $=$ Native Resolution.

Force VGA Resolution

* Native Resolution

Interface Keys

Keyboard Function Relationships

The following Keyboard Function Code, Hex/ASCII Value, and Full ASCII "CTRL"+ relationships apply to all terminals that can be used with the scanner. Refer to page 2-16 enable Control + X (Control + ASCII) Mode.

Function Code	HEX/ASCII Value	Full ASCII (CTRL + X Mode)
NUL	00	@
SOH	01	A
STX	02	B
ETX	03	C
EOT	04	D
ENQ	05	E
ACK	06	F
BEL	07	G
BS	08	H
HT	09	I
LF	OA	J
VT	OB	K
FF	OC	L
CR	OD	M
SO	OE	N
SI	OF	0
DLE	10	P
DC1	11	Q
DC2	12	R
DC3	13	S
DC4	14	T
NAK	15	U
SYN	16	V
ETB	17	W
CAN	18	X
EM	19	Y
SUB	1A	Z
ESC	1B	[
FS	1 C	1
GS	1D]
RS	1E	\wedge
US	1F	-

The last five characters in the Full ASCII "CTRL"+ column ($[\backslash] 6-$), apply to US only. The following chart indicates the equivalents of these five characters for different countries.

Country	Codes				
United States	$[$	\backslash	$]$	6	-
Belgium	$[$	$<$	$]$	6	-
Scandinavia	8	$<$	9	6	-
France	\wedge	8	$\$$	6	$=$
Germany		\tilde{A}	+	6	-
Italy	\backslash	+	6	-	
Switzerland		$<$	\ldots	6	-
United Kingdom	$[$	\varnothing	$]$	6	-

Country	Codes				
Denmark	8	1	9	6	-
Norway	8	1	9	6	-
Spain	$[$	1	$]$	6	-

Supported Interface Keys

ASCII	HEX	IBM PC/AT and Compatibles, USB PC Keyboard	Apple Mac/iMac Supported Keys
NUL	00	Reserved	Reserved
SOH	01	Enter (KP)	Enter/Numpad Enter
STX	02	Cap Lock	CAPS
ETX	03	ALT make	ALT make
EOT	04	ALT break	ALT break
ENQ	05	CTRL make	CNTRL make
ACK	06	CTRL break	CNTRL break
BEL	07	CR/Enter	RETURN
BS	08	Reserved	APPLE make
HT	09	Tab	TAB
LF	OA	Reserved	APPLE break
VT	OB	Tab	TAB
FF	OC	Delete	Del
CR	OD	CR/Enter	RETURN
SO	OE	Insert	Ins Help
SI	OF	Escape	ESC
DLE	10	F11	F11
DC1	11	Home	Home
DC2	12	Print	Prnt Scrn
DC3	13	Back Space	BACKSPACE
DC4	14	Back Tab	LSHIFT TAB
NAK	15	F12	F12
SYN	16	F1	F1
ETB	17	F2	F2
CAN	18	F3	F3
EM	19	F4	F4
SUB	1A	F5	F5
ESC	1B	F6	F6
FS	1 C	F7	F7
GS	1D	F8	F8
RS	1E	F9	F9
US	1F	F10	F10
DEL	7F		BACKSPACE

Utilities

To Add a Test Code I.D. Prefix to All Symbologies

This selection allows you to turn on transmission of a Code I.D. before the decoded symbology. (See the Symbology Charts, beginning on page A-1) for the single character code that identifies each symbology.) This action first clears all current prefixes, then programs a Code I.D. prefix for all symbologies. This is a temporary setting that will be removed when the unit is power cycled.

Add Code I.D. Prefix to
All Symbologies (Temporary)

Show Decoder Revision

Scan the bar code below to output the decoder revision.

Show Decoder Revision

Show Scan Driver Revision

Scan the bar code below to output the scan driver revision. The scan driver controls image capture.

Show Scan Driver Revision

Show Software Revision

Scan the bar code below to output the current software revision, unit serial number, and other product information for both the scan engine and base.

Show Software Revision

Show Data Format

Scan the bar code below to show current data format settings.

DFMBK3?.
Data Format Settings

Test Menu

When you scan the Test Menu On code, then scan a programming code in this manual, the scan engine displays the content of a programming code. The programming function will still occur, but in addition, the content of that programming code is output to the terminal.

Note: This feature should not be used during normal scan engine operation.

On

TotalFreedom

TotalFreedom is an open system architecture that makes it possible for you create applications that reside on your scan engine. Decoding apps and Data Formatting apps can be created using TotalFreedom. For further information about TotalFreedom, go to our website at www.honeywellaidc.com.

Application Plug-Ins (Apps)

Any apps that you are using can be turned off or on by scanning the following bar codes. Apps are stored in groups: Decoding, and Formatting. You can enable and disable these groups of apps by scanning that group's On or Off bar code below. You can also scan the List Apps bar code to output a list of all your apps.

* Formatting Apps On

Note: You must reset your device in order for the apps setting to take effect.

EZConfig-Scanning Introduction

EZConfig-Scanning provides a wide range of PC-based programming functions that can be performed on a scan engine connected to your PC's COM port. EZConfig-Scanning allows you to download upgrades to the scan engine's firmware, change programmed parameters, and create and print programming bar codes. Using EZConfig-Scanning, you can even save/open the programming parameters for a scan engine. This saved file can be e-mailed or, if required, you can create a single bar code that contains all the customized programming parameters and mail or fax that bar code to any location. Users in other locations can scan the bar code to load in the customized programming.

EZConfig-Scanning Operations

The EZConfig-Scanning software performs the following operations:

Scan Data

Scan Data allows you to scan bar codes and display the bar code data in a window. Scan Data lets you send serial commands to the scan engine and receive a scan engine response that can be seen in the Scan Data window. The data displayed in the Scan Data window can either be saved in a file or printed.

Configure

Configure displays the programming and configuration data of the scan engine. The scan engine's programming and configuration data is grouped into different categories. Each category is displayed as a tree item under the "Configure" tree node in the application explorer. When one of these tree nodes is clicked, the right-hand side is loaded with the parameters' form belonging to that particular category. The "Configure" tree option has all the programming and configuration parameters specified for a scan engine. You can set or modify these parameters as required. You can later write the modified settings to the scan engine, or save them to a dcf file.

Imaging

Imaging provides all the image-related functions that a 2D scan engine can perform. You can capture an image using the current settings, and the image will be displayed in an image window. Images captured from the scan engine can be saved to files in different image formats. You can modify the image settings and save the image settings to an INI file, which can be loaded later to capture new images. Imaging also lets you preview the images continuously captured by the scan engine.

Installing EZConfig-Scanning from the Web

Note: EZConfig-Scanning requires .NET software. If .NET is not installed on your PC, you will be prompted to install it during the EZConfig-Scanning installation.

1. Access the Honeywell web site at www.honeywellaidc.com
2. Click on the Resources tab. Select Download.
3. Click on the dropdown for Select Product Number. Click on your product number.
4. Click on the listing for EZConfig-Scanning.
5. When prompted, select Save File, and save the files to the c:Iwindowsltemp directory.
6. Once you have finished downloading the file, exit the web site.
7. Using Explorer, go to the c:Iwindowsltemp file.
8. Double click on the Setup.exe file. Follow the screen prompts to install the EZConfig-Scanning program.
9. If you've selected the defaults during installation, you can click on Start Menu-All Programs-Honeywell-EZConfigScanning.

Resetting the Factory Defaults

! This selection erases all your settings and resets the scan engine to the original factory defaults. It also disables all plugins.
If you aren't sure what programming options are in your scan engine, or you've changed some options and want to restore the scan engine to factory default settings, first scan the Remove Custom Defaults bar code, then scan Activate Defaults. This resets the scan engine to the factory default settings.

Remove Custom Defaults

The Menu Commands, beginning on page 10-3 list the factory default settings for each of the commands (indicated by an asterisk (*) on the programming pages).

Serial Programming Commands

The serial programming commands can be used in place of the programming bar codes. Both the serial commands and the programming bar codes will program the scan engine. For complete descriptions and examples of each serial programming command, refer to the corresponding programming bar code in this manual.
The device must be set to an RS232 interface (see page 2-1). The following commands can be sent via a PC COM port using terminal emulation software.

Conventions

The following conventions are used for menu and query command descriptions:
parameter A label representing the actual value you should send as part of a command.
[option] An optional part of a command.
\{Data\} Alternatives in a command.
bold Names of menus, menu commands, buttons, dialog boxes, and windows that appear on the screen.

Menu Command Syntax

Menu commands have the following syntax (spaces have been used for clarity only):
Prefix Tag SubTag \{Data\} [, SubTag \{Data\}] [; Tag SubTag \{Data\}] [...] Storage
Prefix Three ASCII characters: SYN M CR (ASCII 22,77,13).
Tag A 3 character case-insensitive field that identifies the desired menu command group. For example, all RS-232 configuration settings are identified with a Tag of 232.
SubTag A 3 character case-insensitive field that identifies the desired menu command within the tag group. For example, the SubTag for the RS-232 baud rate is BAD.
Data The new value for a menu setting, identified by the Tag and SubTag.
Storage A single character that specifies the storage table to which the command is applied. An exclamation point (!) performs the command's operation on the device's volatile menu configuration table. A period (.) performs the command's operation on the device's non-volatile menu configuration table. Use the non-volatile table only for semipermanent changes you want saved through a power cycle.

Query Commands

Several special characters can be used to query the device about its settings.
\wedge What is the default value for the setting(s).
? What is the device's current value for the setting(s).

* What is the range of possible values for the setting(s). (The device's response uses a dash (-) to indicate a continuous range of values. A pipe (I) separates items in a list of non-continuous values.)

:Name: Field Usage (Optional)

This command returns the query information from the scan engine.

Tag Field Usage

When a query is used in place of a Tag field, the query applies to the entire set of commands available for the particular storage table indicated by the Storage field of the command. In this case, the SubTag and Data fields should not be used because they are ignored by the device.

SubTag Field Usage

When a query is used in place of a SubTag field, the query applies only to the subset of commands available that match the Tag field. In this case, the Data field should not be used because it is ignored by the device.

Data Field Usage

When a query is used in place of the Data field, the query applies only to the specific command identified by the Tag and SubTag fields.

Concatenation of Multiple Commands

Multiple commands can be issued within one Prefix/Storage sequence. Only the Tag, SubTag, and Data fields must be repeated for each command in the sequence. If additional commands are to be applied to the same Tag, then the new command sequence is separated with a comma (,) and only the SubTag and Data fields of the additional command are issued. If the additional command requires a different Tag field, the command is separated from previous commands by a semicolon (;).

Responses

The device responds to serial commands with one of three responses:
ACK Indicates a good command which has been processed.
ENQ Indicates an invalid Tag or SubTag command.
NAK Indicates the command was good, but the Data field entry was out of the allowable range for this Tag and SubTag combination, e.g., an entry for a minimum message length of 100 when the field will only accept 2 characters.
When responding, the device echoes back the command sequence with the status character inserted directly before each of the punctuation marks (the period, exclamation point, comma, or semicolon) in the command.

Examples of Query Commands

In the following examples, a bracketed notation [] depicts a non-displayable response.
Example: What is the range of possible values for Codabar Coding Enable?

Enter: cbrena*.

Response: CBRENA0-1[ACK]
This response indicates that Codabar Coding Enable (CBRENA) has a range of values from 0 to 1 (off and on).
Example: What is the default value for Codabar Coding Enable?
Enter: cbrena^.
Response: CBRENA1[ACK]
This response indicates that the default setting for Codabar Coding Enable (CBRENA) is 1, or on.
Example: What is the device's current setting for Codabar Coding Enable?

Enter: cbrena?.

Response: CBRENA1[ACK]

This response indicates that the device's Codabar Coding Enable (CBRENA) is set to 1, or on.
Example: What are the device's settings for all Codabar selections?
Enter: cbr?.
Response: CBRENA1[ACK], SSXO[ACK], CK20[ACK],
CCT1[ACK],
MIN2[ACK],
MAX60[ACK],
DFT[ACK].
This response indicates that the device's Codabar Coding Enable (CBRENA) is set to 1, or on;
the Start/Stop Character (SSX) is set to 0, or Don't Transmit;
the Check Character (CK2) is set to 0 , or Not Required;
concatenation (CCT) is set to 1, or Enabled;
the Minimum Message Length (MIN) is set to 2 characters;
the Maximum Message Length (MAX) is set to 60 characters; and the Default setting (DFT) has no value.

Trigger Commands

You can activate and deactivate the scan engine with serial trigger commands. First, the scan engine must be put in Manual Trigger Mode by scanning a Manual Trigger Mode bar code (page 3-5), or by sending a serial menu command for triggering (page 10-8). Once the scan engine is in serial trigger mode, the trigger is activated and deactivated by sending the following commands:
Activate: SYN T CR

Deactivate: SYN U CR

The scan engine scans until a bar code has been read, until the deactivate command is sent, or until the serial time-out has been reached (see "Read Time-Out" on page 3-5 for a description, and the serial command on page 10-8).

Resetting the Custom Defaults

If you want the custom default settings restored to your scan engine, scan the Activate Custom Defaults bar code below. This resets the scan engine to the custom default settings. If there are no custom defaults, it will reset the scan engine to the factory default settings. Any settings that have not been specified through the custom defaults will be defaulted to the factory default settings.

The charts on the following pages list the factory default settings for each of the commands (indicated by an asterisk (*) on the programming pages).

Menu Commands

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Product Default Settings			
Setting Custom Defaults	Set Custom Defaults	MNUCDF	1-4
	Save Custom Defaults	MNUCDS	1-4
Resetting the Custom Defaults	Activate Custom Defaults	DEFALT	1-5
Programming the Interface			
Plug and Play Codes	Keyboard Wedge: IBM PC AT and Compatibles with CR suffix	PAP_AT	2-1
	Laptop Direct Connect with CR suffix	PAPLTD	2-1
	RS232 Serial Port	PAP232	2-1
Plug and Play Codes: IBM SurePos	USB IBM SurePos Handheld	PAPSPH	2-2
	USB IBM SurePos Tabletop	PAPSPT	2-2
Plug and Play Codes: USB	USB Keyboard (PC)	PAP124	2-2
	USB Keyboard (Mac)	PAP125	2-2
	USB Japanese Keyboard (PC)	TRMUSB134	2-2
	USB HID	PAP131	2-2
	USB Serial	TERMID130	2-3
	ACK/NAK Mode On	USBACK1	2-3
	ACK/NAK Mode Off*	USBACK0	2-3

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Plug and Play Codes	Verifone Ruby Terminal	PAPRBY	2-3
	Gilbarco Terminal	PAPGLB	2-4
	Honeywell Bioptic Aux Port	PAPBIO	2-4
	Datalogic Magellan Bioptic Aux Port	PAPMAG	2-4
	NCR Bioptic Aux Port	PAPNCR	2-4
	Wincor Nixdorf Terminal	PAPWNX	2-5
	Wincor Nixdorf Beetle	PAPBTL	2-5
	Wincor Nixdork RS232 Mode A	PAPWMA	2-6
Program Keyboard Country	*U.S.A.	KBDCTYO	2-7
	Albania	KBDCTY35	2-7
	Azeri (Cyrillic)	KBDCTY81	2-7
	Azeri (Latin)	KBDCTY80	2-7
	Belarus	KBDCTY82	2-7
	Belgium	KBDCTY1	2-7
	Bosnia	KBDCTY33	2-7
	Brazil	KBDCTY16	2-7
	Brazil (MS)	KBDCTY59	2-7
	Bulgaria (Cyrillic)	KBDCTY52	2-7
	Bulgaria (Latin)	KBDCTY53	2-8
	Canada (French legacy)	KBDCTY54	2-8
	Canada (French)	KBDCTY18	2-8
	Canada (Multilingual)	KBDCTY55	2-8
	Croatia	KBDCTY32	2-8
	Czech	KBDCTY15	2-8
	Czech (Programmers)	KBDCTY40	2-8
	Czech (QWERTY)	KBDCTY39	2-8
	Czech (QWERTZ)	KBDCTY38	2-8
	Denmark	KBDCTY8	2-8
	Dutch (Netherlands)	KBDCTY11	2-8
	Estonia	KBDCTY41	2-9
	Faeroese	KBDCTY83	2-9
	Finland	KBDCTY2	2-9
	France	KBDCTY3	2-9
	Gaelic	KBDCTY84	2-9
	Germany	KBDCTY4	2-9
	Greek	KBDCTY17	2-9
	Greek (220 Latin)	KBDCTY64	2-9
	Greek (220)	KBDCTY61	2-9
	Greek (319 Latin)	KBDCTY65	2-9
	Greek (319)	KBDCTY62	2-9
	Greek (Latin)	KBDCTY63	2-10
	Greek (MS)	KBDCTY66	2-10

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
	Greek (Polytonic)	KBDCTY60	2-10
	Hebrew	KBDCTY12	2-10
	Hungarian (101 key)	KBDCTY50	2-10
	Hungary	KBDCTY19	2-10
	Iceland	KBDCTY75	2-10
	Irish	KBDCTY73	2-10
	Italian (142)	KBDCTY56	2-10
	Italy	KBDCTY5	2-10
	Japan ASCII	KBDCTY28	2-10
	Kazakh	KBDCTY78	2-11
	Kyrgyz (Cyrillic)	KBDCTY79	2-11
	Latin America	KBDCTY14	2-11
	Latvia	KBDCTY42	2-11
	Latvia (QWERTY)	KBDCTY43	2-11
	Lithuania	KBDCTY44	2-11
	Lithuania (IBM)	KBDCTY45	2-11
	Macedonia	KBDCTY34	2-11
	Malta	KBDCTY74	2-11
	Mongolian (Cyrillic)	KBDCTY86	2-11
	Norway	KBDCTY9	2-11
	Poland	KBDCTY20	2-12
	Polish (214)	KBDCTY57	2-12
	Polish (Programmers)	KBDCTY58	2-12
	Portugal	KBDCTY13	2-12
	Romania	KBDCTY25	2-12
	Russia	KBDCTY26	2-12
	Russian (MS)	KBDCTY67	2-12
	Russian (Typewriter)	KBDCTY68	2-12
	SCS	KBDCTY21	2-12
	Serbia (Cyrillic)	KBDCTY37	2-12
	Serbia (Latin)	KBDCTY36	2-12
	Slovakia	KBDCTY22	2-13
	Slovakia (QWERTY)	KBDCTY49	2-13
	Slovakia (QWERTZ)	KBDCTY48	2-13
	Slovenia	KBDCTY31	2-13
	Spain	KBDCTY10	2-13
	Spanish variation	KBDCTY51	2-13
	Sweden	KBDCTY23	2-13
	Switzerland (French)	KBDCTY29	2-13
	Switzerland (German)	KBDCTY6	2-13
	Tatar	KBDCTY85	2-13
	Turkey F	KBDCTY27	2-13
	Turkey Q	KBDCTY24	2-14

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
	Ukrainian	KBDCTY76	2-14
	United Kingdom	KBDCTY7	2-14
	United Stated (Dvorak right)	KBDCTY89	2-14
	United States (Dvorak left)	KBDCTY88	2-14
	United States (Dvorak)	KBDCTY87	2-14
	United States (International)	KBDCTY30	2-14
	Uzbek (Cyrillic)	KBDCTY77	2-14
Keyboard Conversion	*Keyboard Conversion Off	KBDCNV0	2-15
	Convert all Characters to Upper Case	KBDCNV1	2-15
	Convert all Characters to Lower Case	KBDCNV1	2-15
Keyboard Style	*Regular	KBDSTY0	2-14
	Caps Lock	KBDSTY1	2-14
	Shift Lock	KBDSTY2	2-15
	Automatic Caps Lock	KBDSTY6	2-15
	Emulate External Keyboard	KBDSTY5	2-15
Control Character Output	*Control Character Output Off	KBDNPE0	2-16
	*Control Character Output On	KBDNPE1	2-16
Keyboard Modifiers	*Control + X Off	KBDCAS0	2-16
	DOS Mode Control + X	KBDCAS1	2-16
	Windows Mode Control + X	KBDCAS2	2-16
	Windows Mode Prefix/Suffix Off	KBDCAS3	2-16
	*Turbo Mode Off	KBDTMD0	2-17
	Turbo Mode On	KBDTMD1	2-16
	*Numeric Keypad Off	KBDNPS0	2-17
	Numeric Keypad On	KBDNPS1	2-17
	*Auto Direct Connect Off	KBDADC0	2-17
	Auto Direct Connect On	KBDADC1	2-17
Baud Rate	300 BPS	232BAD0	2-17
	600 BPS	232BAD1	2-17
	1200 BPS	232BAD2	2-17
	2400 BPS	232BAD3	2-18
	4800 BPS	232BAD4	2-18
	9600 BPS	232BAD5	2-18
	19200 BPS	232BAD6	2-18
	38400 BPS	232BAD7	2-18
	57600 BPS	232BAD8	2-18
	*115200 BPS	232BAD9	2-18
Word Length: Data Bits, Stop Bits, and Parity	7 Data, 1 Stop, Parity Even	232WRD3	2-18
	7 Data, 1 Stop, Parity None	232WRD0	2-18
	7 Data, 1 Stop, Parity Odd	232WRD6	2-18
	7 Data, 2 Stop, Parity Even	232WRD4	2-19

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
	7 Data, 2 Stop, Parity None	232WRD1	2-19
	7 Data, 2 Stop, Parity Odd	232WRD7	2-19
	8 Data, 1 Stop, Parity Even	232WRD5	2-19
	*8 Data, 1 Stop, Parity None	232WRD2	2-19
	8 Data, 1 Stop, Parity Odd	232WRD8	2-19
	8 Data, 1 Stop, Parity Mark		2-19
RS232 Receiver Time-out	Range 0-300 seconds	232LPT\#\#\#	2-19
RS232 Handshaking	*RTS/CTS Off	232CTS0	2-20
	Flow Control, No Timeout	232CTS1	2-20
	Two-Direction Flow Control	232CTS2	2-20
	Flow Control with Timeout	232CTS3	2-20
	RS232 Timeout	232DEL\#\#\#\#	2-20
	*XON/XOFF Off	232XON0	2-20
	XON/XOFF On	232XON1	2-20
	*ACK/NAK Off	232ACK0	2-21
	ACK/NAK On	232ACK1	2-21
RS232 Stop Mode	RS232 Stop Mode On	232SDY	2-21
Scanner-Bioptic Packet Mode	*Packet Mode Off	232PKT0	2-21
	Packet Mode On	232PKT2	2-21
Scanner-Bioptic ACK/NAK Mode	*Bioptic ACK/NAK Off	232NAK0	2-22
	Bioptic ACK/NAK On	232NAK1	2-22
Scanner-Bioptic ACK/NAK Timeout	ACK/NAK Timeout *5100	232DLK\#\#\#\#\#	2-22
Input/Output Selections			
Power Up Beeper	Power Up Beeper Off - Scanner	BEPPWR0	3-1
	*Power Up Beeper On - Scanner	BEPPWR1	3-1
Beep on BEL Character	Beep on BEL On	BELBEP1	3-1
	*Beep on BEL Off	BELBEP0	3-1
Trigger Click	On	BEPTRG1	3-1
	*Off	BEPTRG0	3-1
Beeper - Good Read	Off	BEPBEP0	3-2
	*On	BEPBEP1	3-2
Beeper Volume - Good Read	Off	BEPLVL0	3-2
	Low	BEPLVL1	3-2
	Medium	BEPLVL2	3-2
	*High	BEPLVL3	3-2
Beeper Pitch - Good Read (Frequency)	Low (1600) (min 400Hz)	BEPFQ11600	3-2
	*Medium 2700)	BEPFQ12700	3-2
	High (4200) (max 9000Hz)	BEPFQ14200	3-3
Beeper Pitch - Error (Frequency)	*Razz (250) (min 200Hz)	BEPFQ2800	3-3
	Medium (3250)	BEPFQ23250	3-3
	High (4200) (max 9000Hz)	BEPFQ24200	3-3

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Beeper Duration - Good Read	*Normal Beep	BEPBIP0	3-3
	Short Beep	BEPBIP1	3-3
LED - Good Read	Off	BEPLED0	3-3
	*On	BEPLED1	3-3
Number of Beeps - Error	*1	BEPERR3	3-4
	Range 1-9	BEPERR\#	3-4
Number of Beeps - Good Read	*1	BEPRPT1	3-4
	Range 1-9	BEPRPT\#	3-4
Good Read Delay	*No Delay	DLYGRD0	3-4
	Short Delay (500 ms)	DLYGRD500	3-4
	Medium Delay (1000 ms)	DLYGRD1000	3-4
	Long Delay (1500 ms)	DLYGRD1500	3-4
User-Specified Good Read Delay	Range 0-30,000 ms	DLYGRD\#\#\#\#\#	3-4
Manual Trigger Mode	Manual Trigger - Normal	PAPHHF	3-5
LED Illumination - Manual Trigger	Low	PWRNOL15	3-5
	Medium	PWRNOL50	3-5
	*High	PWRNOL150	3-5
Serial Trigger Mode	$\begin{aligned} & \text { Read Time-Out } \\ & (0-300,000 \mathrm{~ms}) * 30,000 \end{aligned}$	TRGSTO\#\#\#\#	3-5
Presentation Mode	Presentation Mode	PAPPST	3-5
Idle Illumination	Low	PWRIDL7	3-6
	Medium	PWRIDL15	3-6
	*High	PWRIDL50	3-6
Presentation Sensitivity	Range 0-20 (*1)	TRGPMS	3-6
Presentation Centering	On	PDCWIN1	3-8
	*Off	PDCWIN0	3-8
	Top	PDCTOP	3-8
	Bottom	PDCBOT	3-8
	Left	PDCLFT	3-8
	Right	PDCRGT	3-8
Poor Quality 1D Codes	On	DECLDI1	3-8
	*Off	DECLDIO	3-9
Poor Quality PDF Codes	On	PDFPR1	3-9
	*Off	PDFXPR0	3-9
CodeGate	*Off	AOSCGD0	3-9
	On	AOSCGD1	3-9
Mobile Phone Read Mode	Hand Held Scanning - Mobile Phone	PAPHHC	3-10
	Presentation Scanning - Mobile Phone	PAPPSC	3-10
Image Snap and Ship	Image Snap and Ship	TRGMOD6	3-10
Hands Free Time-Out	Range 0-300,000 ms	TRGPTO\#\#\#\#\#\#	3-10

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Reread Delay	Short (500 ms)	DLYRRD500	3-10
	*Medium (750 ms)	DLYRRD750	3-10
	Long (1000 ms)	DLYRRD1000	3-10
	Extra Long (2000 ms)	DLYRRD2000	3-10
User-Specified Reread Delay	Range 0-30,000 ms	DLYRRD\#\#\#\#\#	3-11
2D Reread Delay	*2D Reread Delay Off	DLY2RR0	3-11
	Short (1000ms)	DLY2RR1000	3-11
	Medium (2000ms)	DLY2RR2000	3-11
	Long (3000ms)	DLY2RR3000	3-11
	Extra Long (4000ms)	DLY2RR4000	3-11
Character Activation Mode	*Off	HSTCEN0	3-11
	On	HSTCEN1	3-12
Activation Character	*12 [DC2]	HSTACH	3-12
End Character Activation After Good Read	*Do Not End	HSTCGD0	3-12
	End	HSTCGD1	3-12
Character Activation Timeout	Range 1-300,000 milliseconds (*30,000 ms)	HSTCDT	3-12
Character Deactivation Mode	*Off	HSTDEN0	3-13
	On	HSTDEN1	3-13
Deactivation Character	*14 [DC4]	HSTDCH	3-13
Illumination Lights	*Lights On	SCNLED1	3-13
	Lights Off	SCNLED0	3-13
Aimer Delay	200 milliseconds	SCNDLY200	3-13
	400 milliseconds	SCNDLY400	3-14
	*Off (no delay)	SCNDLY0	3-14
User-Specified Aimer Delay	Range 0-4,000 ms	SCNDLY\#\#\#\#	3-14
Aimer Mode	Off	SCNAIMO	3-14
	*Interlaced	SCNAIM2	3-14
Centering Window	Centering On	DECWIN1	3-15
	*Centering Off	DECWIN0	3-15
	Top of Centering Window (*40\%)	DECTOP\#\#\#	3-15
	Bottom of Centering Window (*60\%)	DECBOT\#\#\#	3-15
No Read	On	SHWNRD1	3-16
	*Off	SHWNRD0	3-16
Video Reverse	Video Reverse Only	VIDREV1	3-16
	Video Reverse and Standard Bar Codes	VIDREV2	3-16
	*Video Reverse Off	VIDREV0	3-16
Working Orientation	*Upright	ROTATN0	3-17
	Vertical, Bottom to Top (Rotate CCW 90 ${ }^{\circ}$)	ROTATN1	3-17
	Upside Down	ROTATN2	3-17
	Vertical, Top to Bottom (Rotate CW 90 ${ }^{\circ}$)	ROTATN3	3-17
Prefix/Suffix Selections			
Add CR Suffix to All Symbologies		VSUFCR	4-2

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Prefix	Add Prefix	PREBK2\#\#	4-2
	Clear One Prefix	PRECL2	4-2
	Clear All Prefixes	PRECA2	4-2
Suffix	Add Suffix	SUFBK2\#\#	4-2
	Clear One Suffix	SUFCL2	4-3
	Clear All Suffixes	SUFCA2	4-3
Function Code Transmit	*Enable	RMVFNC0	4-3
	Disable	RMVFNC1	4-3
Intercharacter Delay	Range 0-1000 (5ms increments)	DLYCHR\#\#	4-3
User Specified Intercharacter Delay	Delay Length 0-1000 (5ms increments)	DLYCRX\#\#	4-3
	Character to Trigger Delay	DLY_XX\#\#	4-3
Interfunction Delay	Range 0-1000 (5ms increments)	DLYFNC\#\#	4-4
Intermessage Delay	Range 0-1000 (5ms increments)	DLYMSG\#\#	4-4
Data Formatter Selections			
Data Format Editor	*Default Data Format (None)	DFMDF3	5-1
	Enter Data Format	DFMBK3\#\#	5-2
	Clear One Data Format	DFMCL3	5-2
	Clear All Data Formats	DFMCA3	5-2
Data Formatter	Data Formatter Off	DFM_EN0	5-12
	*Data Formatter On, Not Required, Keep Prefix/Suffix	DFM_EN1	5-12
	Data Format Required, Keep Prefix/Suffix	DFM_EN2	5-12
	Data Formatter On, Not Required, Drop Prefix/Suffix	DFM_EN3	5-12
	Data Format Required, Drop Prefix/Suffix	DFM_EN4	5-12
Primary/Alternate Data Formats	Primary Data Format	ALTFNM0	5-13
	Data Format 1	ALTFNM1	5-13
	Data Format 2	ALTFNM2	5-13
	Data Format 3	ALTFNM3	5-13
Symbologies			
All Symbologies	All Symbologies Off	ALLENAO	6-1
	All Symbologies On	ALLENA1	6-1
Codabar	Default All Codabar Settings	CBRDFT	6-2
	Off	CBRENAO	6-2
	*On	CBRENA1	6-2
Codabar Start/Stop Char.	*Don't Transmit	CBRSSX0	6-2
	Transmit	CBRSSX1	6-2

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Codabar Check Char.	*No Check Character	CBRCK20	6-2
	Validate Modulo 16, But Don't Transmit	CBRCK21	6-3
	Validate Modulo 16, and Transmit	CBRCK22	6-3
Codabar Concatenation	*Off	CBRCCT0	6-3
	On	CBRCCT1	6-3
	Require	CBRCCT2	6-3
Codabar Message Length	Minimum (2-60) *4	CBRMIN\#\#	6-3
	Maximum (2-60) *60	CBRMAX\#\#	6-3
Code 39	Default All Code 39 Settings	C39DFT	6-4
	Off	C39ENA0	6-4
	*On	C39ENA1	6-4
Code 39 Start/Stop Char.	*Don't Transmit	C39SSX0	6-4
	Transmit	C39SSX1	6-4
Code 39 Check Char.	*No Check Char.	C39CK20	6-4
	Validate, But Don't Transmit	C39CK21	6-4
	Validate, and Transmit	C39CK22	6-4
Code 39 Message Length	Minimum (0-48) *0	C39MIN\#\#	6-5
	Maximum (0-48) *48	C39MAX\#\#	6-5
Code 39 Append	*Off	C39APP0	6-5
	On	C39APP1	6-5
Code 32 Pharmaceutical (PARAF)	*Off	C39B320	6-5
	On	C39B321	6-5
Code 39 Full ASCII	*Off	C39ASC0	6-6
	On	C39ASC1	6-6
	Code 39 Code Page	C39DCP	6-6
Interleaved 2 of 5	Default All Interleaved 2 of 5 Settings	I25DFT	6-7
	Off	I25ENA0	6-7
	*On	I25ENA1	6-7
Interleaved 2 of 5 Check Digit	*No Check Char.	I25CK20	6-7
	Validate, But Don’t Transmit	I25CK21	6-7
	Validate, and Transmit	I25CK22	6-7
Interleaved 2 of 5 Message Length	Minimum (2-80) *4	I25MIN\#\#	6-7
	Maximum (2-80) *80	I25MAX\#\#	6-7
NEC 2 of 5	Default All NEC 2 of 5 Settings	N25DFT	6-8
	Off	N25ENA0	6-8
	*On	N25ENA1	6-8

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
NEC 2 of 5 Check Digit	*No Check Char.	N25CK20	6-8
	Validate, But Don't Transmit	N25CK21	6-8
	Validate, and Transmit	N25CK22	6-8
NEC 2 of 5 Message Length	Minimum (2-80) *4	N25MIN\#\#	6-9
	Maximum (2-80) *80	N25MAX\#\#	6-9
Code 93	Default All Code 93 Settings	C93DFT	6-9
	Off	C93ENA0	6-9
	*On	C93ENA1	6-9
Code 93 Message Length	Minimum (0-80) *0	C93MIN\#\#	6-9
	Maximum (0-80) *80	C93MAX\#\#	6-9
Code 93 Append	On	C93APP1	6-10
	*Off	C93APP0	6-10
Code 93 Code Page	Code 93 Code Page	C93DCP	6-10
Straight 2 of 5 Industrial	Default All Straight 2 of 5 Industrial Settings	R25DFT	6-11
	*Off	R25ENA0	6-11
	On	R25ENA1	6-11
Straight 2 of 5 Industrial Message Length	Minimum (1-48) *4	R25MIN\#\#	6-11
	Maximum (1-48) *48	R25MAX\#\#	6-11
Straight 2 of 5 IATA	Default All Straight 2 of 5 IATA Settings	A25DFT	6-12
	*Off	A25ENA0	6-12
	On	A25ENA1	6-12
Straight 2 of 5 IATA Message Length	Minimum (1-48) *4	A25MIN\#\#	6-12
	Maximum (1-48) *48	A25MAX\#\#	6-12
Matrix 2 of 5	Default All Matrix 2 of 5 Settings	X25DFT	6-13
	*Off	X25ENA0	6-13
	On	X25ENA1	6-13
Matrix 2 of 5 Message Length	Minimum (1-80) *4	X25MIN\#\#	6-13
	Maximum (1-80) *80	X25MAX\#\#	6-13
Code 11	Default All Code 11 Settings	C11DFT	6-14
	*Off	C11ENA0	6-14
	On	C11ENA1	6-14
Code 11 Check Digits Required	1 Check Digit	C11CK20	6-14
	*2 Check Digits	C11CK21	6-14
Code 11 Message Length	Minimum (1-80) *4	C11MIN\#\#	6-14
	Maximum (1-80) *80	C11MAX\#\#	6-14

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Code 128	Default All Code 128 Settings	128DFT	6-15
	Off	128ENA0	6-15
	*On	128ENA1	6-15
ISBT Concatenation	*Off	ISBENAO	6-15
	On	ISBENA1	6-15
Code 128 Message Length	Minimum (0-80) *0	128MIN\#\#	6-15
	Maximum (0-90) *80	128MAX\#\#	6-15
Code 128 Append	*On	128APP1	6-16
	Off	128APP0	6-16
Code 128 Code Page	Code 128 Code Page (*2)	128DCP\#\#	6-16
GS1-128	Default All GS1-128 Settings	GS1DFT	6-17
	*On	GS1ENA1	6-17
	Off	GS1ENA0	6-17
GS1-128 Message Length	Minimum (1-80) *1	GS1MIN	6-17
	Maximum (0-80) *80	GS1MAX	6-17
UPC-A	Default All UPC-A Settings	UPADFT	6-17
	Off	UPBENA0	6-17
	*On	UPBENA1	6-17
UPC-A Check Digit	Off	UPACKX0	6-18
	*On	UPACKX1	6-18
UPC-A Number System	Off	UPANSX0	6-18
	*On	UPANSX1	6-18
UPC-A 2 Digit Addenda	*Off	UPAAD20	6-18
	On	UPAAD21	6-18
UPC-A 5 Digit Addenda	*Off	UPAAD50	6-18
	On	UPAAD51	6-18
UPC-A Addenda Required	*Not Required	UPAARQ0	6-19
	Required	UPAARQ1	6-19
UPC-A Addenda Separator	Off	UPAADS0	6-19
	*On	UPAADS1	6-19
UPC-A/EAN-13 with Extended Coupon Code	*Off	CPNENA0	6-19
	Allow Concatenation	CPNENA1	6-19
	Require Concatenation	CPNENA2	6-19
Coupon GS1 DataBar Output	GS1 Output Off	CPNGS10	6-20
	GS1 Output On	CPNGS11	6-20
UPC-E0	Default All UPC-E Settings	UPEDFT	6-20
	Off	UPEEN00	6-20
	*On	UPEEN01	6-20
UPC-E0 Expand	*Off	UPEEXP0	6-20
	On	UPEEXP1	6-20

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
UPC-E0 Addenda Required	Required	UPEARQ1	6-21
	*Not Required	UPEARQ0	6-21
UPC-E0 Addenda Separator	*On	UPEADS1	6-21
	Off	UPEADS0	6-21
UPC-E0 Check Digit	Off	UPECKXO	6-21
	*On	UPECKX1	6-21
UPC-E0 Leading Zero	Off	UPENSX0	6-21
	*On	UPENSX1	6-21
UPC-E0 Addenda	2 Digit Addenda On	UPEAD21	6-22
	*2 Digit Addenda Off	UPEAD20	6-22
	5 Digit Addenda On	UPEAD51	6-22
	*5 Digit Addenda Off	UPEAD50	6-22
UPC-E1	*Off	UPEEN10	6-22
	On	UPEEN11	6-22
EAN/JAN-13	Default All EAN/ JAN Settings	E13DFT	6-23
	Off	E13ENA0	6-23
	*On	E13ENA1	6-23
Convert UPC-A to EAN-13	UPC-A Converted to EAN-13	UPAENAO	6-23
	Do not Convert UPC-A	UPAENA1	6-23
EAN/JAN-13 Check Digit	Off	E13CKX0	6-23
	*On	E13CKX1	6-23
EAN/JAN-13 2 Digit Addenda	2 Digit Addenda On	E13AD21	6-24
	*2 Digit Addenda Off	E13AD20	6-24
	5 Digit Addenda On	E13AD51	6-24
	*5 Digit Addenda Off	E13AD50	6-24
EAN/JAN-13 Addenda Required	*Not Required	E13ARQ0	6-24
	Required	E13ARQ1	6-24
EAN/JAN-13 Addenda Separator	Off	E13ADS0	6-24
	*On	E13ADS1	6-24
ISBN Translate	*Off	E13ISB0	6-25
	On	E13ISB1	6-25
EAN/JAN-8	Default All EAN/ JAN 8 Settings	EA8DFT	6-25
	Off	EA8ENA0	6-25
	*On	EA8ENA1	6-25
EAN/JAN-8 Check Digit	Off	EA8CKX0	6-25
	*On	EA8CKX1	6-25
EAN/JAN-8 Addenda	*2 Digit Addenda Off	EA8AD20	6-26
	2 Digit Addenda On	EA8AD21	6-26
	5 Digit Addenda On	EA8AD51	6-26
	*5 Digit Addenda Off	EA8AD50	6-26

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
EAN/JAN-8 Addenda Required	*Not Required	EA8ARQ0	6-26
	Required	EA8ARQ1	6-26
EAN/JAN-8 Addenda Separator	Off	EA8ADS0	6-26
	*On	EA8ADS1	6-26
MSI	Default All MSI Settings	MSIDFT	6-27
	*Off	MSIENAO	6-27
	On	MSIENA1	6-27
MSI Check Character	*Validate Type 10, but Don't Transmit	MSICHK0	6-27
	Validate Type 10 and Transmit	MSICHK1	6-27
	Validate 2 Type 10 Chars, but Don't Transmit	MSICHK2	6-27
	Validate 2 Type 10 Chars and Transmit	MSICHK3	6-27
	Validate Type 11 then Type 10 Char, but Don't Transmit	MSICHK4	6-27
	Validate Type 11 then Type 10 Char and Transmit	MSICHK5	6-28
	Disable MSI Check Characters	MSICHK6	6-28
MSI Message Length	Minimum (4-48) *4	MSIMIN\#\#	6-28
	Maximum (4-48) *48	MSIMAX\#\#	6-28
GS1 DataBar Omnidirectional	Default All GS1 DataBar Omnidirectional Settings	RSSDFT	6-29
	Off	RSSENA0	6-29
	*On	RSSENA1	6-29
GS1 DataBar Limited	Default All GS1 DataBar Limited Settings	RSLDFT	6-29
	Off	RSLENA0	6-29
	*On	RSLENA1	6-29
GS1 DataBar Expanded	Default All GS1 DataBar Expanded Settings	RSEDFT	6-30
	Off	RSEENA0	6-30
	*On	RSEENA1	6-30
GS1 DataBar Expanded Msg. Length	Minimum (4-74) *4	RSEMIN\#\#	6-30
	Maximum (4-74) *74	RSEMAX\#\#	6-30
Trioptic Code	*Off	TRIENAO	6-30
	On	TRIENA1	6-30
Codablock A	Default All Codablock A Settings	CBADFT	6-30
	*Off	CBAENA0	6-30
	On	CBAENA1	6-30
Codablock A Msg. Length	Minimum (1-600) *1	CBAMIN\#\#\#\#	6-31
	Maximum (1-600) *600	CBAMAX\#\#\#\#	6-31
Codablock F	Default All Codablock F Settings	CBFDFT	6-31
	*Off	CBFENA0	6-31
	On	CBFENA1	6-31

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Codablock F Msg. Length	Minimum (1-2048) *1	CBFMIN\#\#\#\#	6-31
	Maximum (1-2048) *2048	CBFMAX\#\#\#\#	6-31
PDF417	Default All PDF417 Settings	PDFDFT	6-32
	*On	PDFENA1	6-32
	Off	PDFENAO	6-32
PDF417 Msg. Length	Minimum (1-2750) *1	PDFMIN	6-32
	Maximum (1-2750) *2750	PDFMAX	6-32
MacroPDF417	*On	PDFMAC1	6-32
	Off	PDFMAC0	6-32
MicroPDF417	Default All Micro PDF417 Settings	MPDDFT	6-33
	On	MPDENA1	6-33
	*Off	MPDENAO	6-33
MicroPDF417 Msg. Length	Minimum (1-366) *1	MPDMIN	6-33
	Maximum (1-366) *366	MPDMAX	6-33
GS1 Composite Codes	On	COMENA1	6-33
	*Off	COMENAO	6-33
UPC/EAN Version	On	COMUPC1	6-34
	*Off	COMUPC0	6-34
GS1 Composite Codes Msg. Length	Minimum (1-2435) *1	COMMIN	6-34
	Maximum (1-2435) *2435	COMMAX	6-34
GS1 Emulation	GS1-128 Emulation	EANEMU1	6-34
	GS1 DataBar Emulation	EANEMU2	6-35
	GS1 Code Expansion Off	EANEMU3	6-35
	EAN8 to EAN13 Conversion	EANEMU4	6-35
	*GS1 Emulation Off	EANEMU0	6-35
TCIF Linked Code 39	On	T39ENA1	6-35
	*Off	T39ENA0	6-35
QR Code	Default All QR Code Settings	QRCDFT	6-35
	*On	QRCENA1	6-35
	Off	QRCENAO	6-35
QR Code Msg. Length	Minimum (1-7089) *1	QRCMIN	6-36
	Maximum (1-7089) *7089	QRCMAX	6-36
QR Code Append	*On	QRCAPP1	6-36
	Off	QRCAPP0	6-36
QR Code Page	QR Code Page (*3)	QRCDCP\#\#	6-36
Data Matrix	Default All Data Matrix Settings	IDMDFT	6-37
	*On	IDMENA1	6-37
	Off	IDMENAO	6-37
Data Matrix Msg. Length	Minimum (1-3116) *1	IDMMIN	6-37
	Maximum (1-3116) *3116	IDMMAX	6-37
Data Matrix Append	*On	IDMAPP1	6-37
	Off	IDMAPP0	6-37
Data Matrix Code Page	Data Matrix Code Page (*51)	IDMDCP\#\#	6-37

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
MaxiCode	Default All MaxiCode Settings	MAXDFT	6-38
	*On	MAXENA1	6-38
	Off	MAXENA0	6-38
MaxiCode Msg. Length	Minimum (1-150) *1	MAXMIN	6-38
	Maximum (1-150) *150	MAXMAX	6-38
Aztec Code	Default All Aztec Code Settings	AZTDFT	6-39
	*On	AZTENA1	6-39
	Off	AZTENA0	6-39
Aztec Code Msg. Length	Minimum (1-3832) *1	AZTMIN	6-39
	Maximum (1-3832) *3832	AZTMAX	6-39
Aztec Append	*On	AZTAPP1	6-39
	Off	AZTAPP0	6-39
Aztec Code Page	Aztec Code Page (*51)	AZTDCP\#\#	6-39
Chinese Sensible (Han Xin) Code	Default All Han Xin Code Settings	HX_DFT	6-40
	On	HX_ENA1	6-40
	*Off	HX_ENAO	6-40
Chinese Sensible (Han Xin) Code Msg. Length	Minimum (1-7833) *1	HX_MIN	6-40
	Maximum (1-7833) *7833	HX_MAX	6-40
Postal Codes - 2D			
2D Postal Codes	*Off	POSTALO	6-41
Single 2D Postal Codes	Australian Post On	POSTAL1	6-41
	British Post On	POSTAL7	6-41
	Canadian Post On	POSTAL30	6-41
	Intelligent Mail Bar Code On	POSTAL10	6-41
	Japanese Post On	POSTAL3	6-41
	KIX Post On	POSTAL4	6-41
	Planet Code On	POSTAL5	6-41
	Postal-4i On	POSTAL9	6-41
	Postnet On	POSTAL6	6-42
	Postnet with B and B' Fields On	POSTAL11	6-42
	InfoMail On	POSTAL2	6-42
Combination 2D Postal Codes	InfoMail and British Post On	POSTAL8	6-42
	Intelligent Mail Bar Code and Postnet with B and B' Fields On	POSTAL20	6-42
	Postnet and Postal-4i On	POSTAL14	6-42
	Postnet and Intelligent Mail Bar Code On	POSTAL16	6-42
	Postal-4i and Intelligent Mail Bar Code On	POSTAL17	6-42
	Postal-4i and Postnet with B and B' Fields On	POSTAL19	6-42
	Planet and Postnet On	POSTAL12	6-42
	Planet and Postnet with B and B' Fields On	POSTAL18	6-43
	Planet and Postal-4i On	POSTAL13	6-43

Selection	Setting *Indicates default	Serial Command \# Indicates a numeric entry	Page
	Planet and Intelligent Mail Bar Code On	POSTAL15	6-43
	Planet, Postnet, and Postal-4i On	POSTAL21	6-43
	Planet, Postnet, and Intelligent Mail Bar Code On	POSTAL22	6-43
	Planet, Postal-4i, and Intelligent Mail Bar Code On	POSTAL23	6-43
	Postnet, Postal-4i, and Intelligent Mail Bar Code On	POSTAL24	6-43
	Planet, Postal-4i, and Postnet with B and B' Fields On	POSTAL25	6-43
	Planet, Intelligent Mail Bar Code, and Postnet with B and B' Fields On	POSTAL26	6-43
	Postal-4i, Intelligent Mail Bar Code, and Postnet with B and B' Fields On	POSTAL27	6-43
	Planet, Postal-4i, Intelligent Mail Bar Code, and Postnet On	POSTAL28	6-44
	Planet, Postal-4i, Intelligent Mail Bar Code, and Postnet with B and B' Fields On	POSTAL29	6-44
Planet Code Check Digit	Transmit	PLNCKX1	6-44
	*Don't Transmit	PLNCKX0	6-44
Postnet Check Digit	Transmit	NETCKX1	6-44
	*Don't Transmit	NETCKX0	6-44
Australian Post Interpretation	Bar Output	AUSINT0	6-45
	Numeric N Table	AUSINT1	6-45
	Alphanumeric C Table	AUSINT2	6-45
	Combination N and C Tables	AUSINT3	6-45
Postal Codes - Linear			
China Post (Hong Kong 2 of 5)	Default All China Post (Hong Kong 2 of 5) Settings	CPCDFT	6-45
	*Off	CPCENAO	6-45
	On	CPCENA1	6-45
China Post (Hong Kong 2 of 5) Msg. Length	Minimum (2-80) *4	CPCMIN\#\#	6-45
	Maximum (2-80) *80	CPCMAX\#\#	6-45
Korea Post	Default All Korea Post Settings	KPCDFT	6-46
	*Off	KPCENAO	6-46
	On	KPCENA1	6-46
Korea Post Msg. Length	Minimum (2-80) *4	KPCMIN\#\#	6-46
	Maximum (2-80) *48	KPCMAX\#\#	6-46
Korea Post Check Digit	Transmit Check Digit	KPCCHK1	6-46
	*Don't Transmit Check Digit	KPCCHKO	6-46
Imaging Default Commands			
Image Snap	Default all Imaging Commands	IMGDFT	7-1
	Imaging Style - Decoding	SNPSTY0	7-1
	*Imaging Style - Photo	SNPSTY1	7-1

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
	Imaging Style - Manual	SNPSTY2	7-1
	Beeper On	SNPBEP1	7-1
	*Beeper Off	SNPBEP0	7-1
	*Wait for Trigger Off	SNPTRG0	7-2
	Wait for Trigger On	SNPTRG1	7-2
	*LED State - Off	SNPLED0	7-2
	LED State - On	SNPLED1	7-2
	Exposure (1-7874 microseconds)	SNPEXP	7-2
	*Gain - None	SNPGAN1	7-2
	Gain - Medium	SNPGAN2	7-2
	Gain - Heavy	SNPGAN4	7-2
	Gain - Maximum	SNPGAN8	7-2
	Target White Value (0-255) *125	SNPWHT\#\#\#	7-3
	Delta for Acceptance (0-255) *25	SNPDEL\#\#\#	7-3
	Update Tries (0-10) *6	SNPTRY\#\#	7-3
	Target Set Point Percentage (1-99) *50	SNPPCT\#\#	7-3
Image Ship	*Infinity Filter - Off	IMGINF0	7-3
	Infinity Filter - On	IMGINF1	7-3
	*Compensation Off	IMGCOR0	7-4
	Compensation On	IMGCOR1	7-4
	*Pixel Depth - 8 bits/pixel (grayscale)	IMGBPP8	7-4
	Pixel Depth - 1 bit/pixel (B\&W)	IMGBPP1	7-4
	*Don't Sharpen Edges	IMGEDG0	7-5
	Sharpen Edges (0-23)	IMGEDG\#\#	7-5
	*File Format - JPEG	IMGFMT6	7-5
	File Format - KIM	IMGFMT0	7-5
	File Format - TIFF binary	IMGFMT1	7-5
	File Format - TIFF binary group 4, compressed	IMGFMT2	7-5
	File Format - TIFF grayscale	IMGFMT3	7-5
	File Format - Uncompressed binary	IMGFMT4	7-5
	File Format - Uncompressed grayscale	IMGFMT5	7-5
	File Format - BMP	IMGFMT8	7-5
	*Histogram Stretch Off	IMGHIS0	7-5
	Histogram Stretch On	IMGHIS1	7-5
	*Noise Reduction Off	IMGFSP0	7-6
	Noise Reduction On	IMGFSP1	7-6
	Invert Image around X axis	IMGNVX1	7-5
	Invert Image around Y axis	IMGNVY1	7-5
	Rotate Image none	IMGROT0	7-7
	Rotate Image 90° right	IMGROT1	7-7
	Rotate Image 180° right	IMGROT2	7-7

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
	Rotate Image 90° left	IMGROT3	7-7
	JPEG Image Quality (0-100) *50	IMGJQF\#\#\#	7-7
	*Gamma Correction Off	IMGGAMO	7-7
	Gamma Correction On (0-1000)	IMGGAM\#\#\#	7-7
	Image Crop - Left (0-640) *0	IMGWNL\#\#\#	7-7
	Image Crop - Right (0-640) *639	IMGWNR\#\#\#	7-7
	Image Crop - Top (0-480) *0	IMGWNT\#\#\#	7-7
	Image Crop - Bottom (0-480) *479	IMGWNB\#\#\#	7-7
	Image Crop - Margin (1-238) *0	IMGMAR\#\#\#	7-7
	Protocol - None (raw)	IMGXFR0	7-8
	Protocol - None (default USB)	IMGXFR2	7-8
	Protocol - Hmodem Compressed	IMGXFR3	7-8
	Protocol - Hmodem	IMGXFR4	7-8
	Ship Every Pixel	IMGSUB1	7-8
	Ship Every 2nd Pixel	IMGSUB2	7-8
	Ship Every 3rd Pixel	IMGSUB3	7-8
	*Document Image Filter Off	IMGUSH0	7-9
	Document Image Filter On (0-255)	IMGUSH\#\#\#	7-9
	*Don't Ship Histogram	IMGHST0	7-9
	Ship Histogram	IMGHST1	7-9
Image Size Compatibility	Force VGA Resolution	IMGVGA1	7-10
	*Native Resolution	IMGVGAO	7-10
Utilities			
Add Code I.D. Prefix to All Symbologies (Temporary)		PRECA2,BK2995C80!	9-1
Show Decoder Revision		REV_DR	9-1
Show Scan Driver Revision		REV_SD	9-1
Show Software Revision		REVINF	9-1
Show Data Format		DFMBK3?	9-1
Test Menu	On	TSTMNU1	9-2
	*Off	TSTMNU0	9-2
Application Plug-Ins (Apps)	*Decoding Apps On	PLGDCE1	9-2
	Decoding Apps Off	PLGDCE0	9-2
	*Formatting Apps On	PLGFOE1	9-2
	Formatting Apps Off	PLGFOE0	9-2
	List Apps	PLGINF	9-2
Resetting the Factory Defaults	Remove Custom Defaults	DEFOVR	9-4
	Activate Defaults	DEFALT	9-4

Maintenance and Troubleshooting

Repairs

Repairs and/or upgrades are not to be performed on this product. These services are to be performed only by an authorized service center. See "Customer Support" on page vii for further information.

Inspecting Cords and Connectors

Inspect the scan engine's interface cable and connector for wear or other signs of damage. A badly worn cable or damaged connector may interfere with scan engine operation. Contact your Honeywell distributor for information about cable replacement.

Troubleshooting

The scan engine automatically performs self-tests whenever you turn it on. If your scan engine is not functioning properly, review the following Troubleshooting Guide to try to isolate the problem.
Is the power on? Is the red or green aiming illumination line on?
If the aiming line doesn't appear, check that:

- The cable is connected properly.
- The host system power is on (if external power isn't used).

Is the scan engine having trouble reading your symbols?
If the scan engine isn't reading symbols well, check that the symbols:

- Aren't smeared, rough, scratched, or exhibiting voids.
- Aren't coated with frost or water droplets on the surface.
- Are enabled in the scan engine or in the decoder to which the scan engine connects.

Is the bar code displayed but not entered?

The bar code is displayed on the host device correctly, but you still have to press a key to enter it (the Enter/Return key or the Tab key, for example).
You need to program a suffix. Programming a suffix enables the scan engine to output the bar code data plus the key you need (such as "CR") to enter the data into your application. Refer to "Prefix/Suffix Overview" on page 4-1 for further information.

Does the scan engine read the bar code incorrectly?

If the scan engine reads a bar code, but the data is not displayed correctly on the host screen:

- The scan engine may not be programmed for the appropriate terminal interface.

For example, you scan "12345" and the host displays "@es\%."
Reprogram the scan engine with the correct Plug and Play or Terminal selection bar code. See Chapter 2 and Chapter 3.
The scan engine may not be programmed to output your bar code data properly.
For example, you scan "12345" and the host displays "A12345B."
Reprogram the scan engine with the proper symbology selections. See Chapter 6.

The scan engine won't read your bar code at all.

1. Scan the sample bar codes in the back of this manual. If the scan engine reads the sample bar codes, check that your bar code is readable.
Verify that your bar code symbology is enabled (see Chapter 6).
2. If the scan engine still can't read the sample bar codes, scan "All Symbologies" on page 6-1.

If you aren't sure what programming options have been set in the scan engine, or if you want the factory default settings restored, scan Resetting the Factory Defaults on page 9-4.

Reference Charts

Symbology Charts

Note: " m " represents the AIM modifier character. Refer to International Technical Specification, Symbology Identifiers, for AIM modifier character details.

Prefix/Suffix entries for specific symbologies override the universal (All Symbologies, 99) entry.
Refer to Data Editing beginning on page 4-1 and Data Formatting beginning on page 5-1 for information about using Code ID and AIM ID.

Linear Symbologies

	AIM		Honeywell	
Symbology	ID	Possible modifiers (m)	ID	Hex
All Symbologies				99
Codabar]Fm	0-1	a	61
Code 11]H3		h	68
Code 128]Cm	0, 1, 2, 4	j	6A
Code 32 Pharmaceutical (PARAF)]X0		<	3C
Code 39 (supports Full ASCII mode)]Am	$0,1,3,4,5,7$	b	62
TCIF Linked Code 39 (TLC39)	JL2		T	54
Code 93 and 93i]Gm	$\begin{aligned} & 0-9, A-Z, \\ & a-m \end{aligned}$	i	69
EAN]Em	0, 1, 3, 4	d	64
EAN-13 (including Bookland EAN)]E0		d	64
EAN-13 with Add-On]E3		d	64
EAN-13 with Extended Coupon Code]E3		d	64
EAN-8]E4		D	44
EAN-8 with Add-On]E3		D	44
GS1				
GS1 DataBar]em	0	y	79
GS1 DataBar Limited]em		\{	7B
GS1 DataBar Expanded]em		\}	7D
GS1-128]C1		I	49
2 of 5				
China Post (Hong Kong 2 of 5)]X0		Q	51
Interleaved 2 of 5]lm	0, 1, 3	e	65
Matrix 2 of 5]X0		m	6D
NEC 2 of 5]X0		Y	59
Straight 2 of 5 IATA]Rm	0, 1, 3	f	66
Straight 2 of 5 Industrial]S0		f	66
MSI]Mm	0,1	g	67
Telepen]Bm		t	74
UPC		0, 1, 2, 3, 8, 9, A, B, C		

	AIM		Honeywell	
Symbology	ID	Possible modifiers (m)	ID	Hex
UPC-A	JE0		c	63
UPC-A with Add-On	JE3		c	63
UPC-A with Extended Coupon Code	JE3		c	63
UPC-E	JE0		E	45
UPC-E with Add-On	JE3		E	45
UPC-E1	JX0		E	45

Add Honeywell Code ID				5 C80
Add AIM Code ID				5 C81
Add Backslash				5 C5C
Batch mode quantity			5	35

2D Symbologies

Symbology	AIM		Honeywell	
	ID	Possible modifiers (m)	ID	Hex
All Symbologies				99
Aztec Code]zm	0-9, A-C	z	7A
Chinese Sensible Code (Han Xin Code)]X0		H	48
Codablock A	106	0, 1, 4, 5, 6	V	56
Codablock F]Om	0, 1, 4, 5, 6	q	71
Code 49]Tm	0, 1, 2, 4	I	6C
Data Matrix]dm	0-6	w	77
GS1]em	0-3	y	79
GS1 Composite]em	0-3	y	79
GS1 DataBar Omnidirectional]em		y	79
MaxiCode]Um	0-3	x	78
PDF417]Lm	0-2	r	72
MicroPDF417]Lm	0-5	R	52
QR Code]Qm	0-6	s	73
Micro QR Code]Qm		s	73

Postal Symbologies

Symbology	AIM		Honeywell	
	ID	Possible modifiers (m)	ID	Hex
All Symbologies				99
Australian Post]X0		A	41
British Post]X0		B	42
Canadian Post]X0		C	43
China Post]X0		Q	51
InfoMail]X0		,	2c
Intelligent Mail Bar Code]X0		M	4D
Japanese Post]X0		J	4A
KIX (Netherlands) Post]X0		K	4B
Korea Post]X0		?	3F
Planet Code]X0		L	4C
Postal-4i]X0		N	4E
Postnet]X0		P	50

ASCII Conversion Chart (Code Page 1252)

In keyboard applications, ASCII Control Characters can be represented in 3 different ways, as shown below. The CTRL+X function is OS and application dependent. The following table lists some commonly used Microsoft functionality. This table applies
to U.S. style keyboards. Certain characters may differ depending on your Country Code/PC regional settings.

Non-printablecharacters \quad ASCII control			Keyboard Control + ASCII (CTRL+X) Mode				
			Control + X Mode Off (KBDCASO)	Windows Mode Control + X Mode On (KBDCAS2)			
DEC	HEX	Char		CTRL + X	CTRL + X function		
0	00	NUL	Reserved	CTRL+ @			
1	01	SOH	NP Enter	CTRL+ A	Select all		
2	02	STX	Caps Lock	CTRL+ B	Bold		
3	03	ETX	ALT Make	CTRL+ C	Copy		
4	04	EOT	ALT Break	CTRL+ D	Bookmark		
5	05	ENQ	CTRL Make	CTRL+ E	Center		
6	06	ACK	CTRL Break	CTRL+ F	Find		
7	07	BEL	Enter / Ret	CTRL+ G			
8	08	BS	(Apple Make)	CTRL+ H	History		
9	09	HT	Tab	CTRL+ I	Italic		
10	OA	LF	(Apple Break)	CTRL+ J	Justify		
11	OB	VT	Tab	CTRL+ K	hyperlink		
12	OC	FF	Delete	CTRL+ L	$\begin{aligned} & \hline \text { list, } \\ & \text { left align } \end{aligned}$		
13	OD	CR	Enter / Ret	CTRL+ M			
14	OE	SO	Insert	CTRL+ N	New		
15	OF	SI	ESC	CTRL+ O	Open		
16	10	DLE	F11	CTRL+ P	Print		
17	11	DC1	Home	CTRL+ Q	Quit		
18	12	DC2	PrtScn	CTRL+ R			
19	13	DC3	Backspace	CTRL+ S	Save		
20	14	DC4	Back Tab	CTRL+ T			
21	15	NAK	F12	CTRL+ U			
22	16	SYN	F1	CTRL+ V	Paste		
23	17	ETB	F2	CTRL+ W			
24	18	CAN	F3	CTRL+ X			
25	19	EM	F4	CTRL+ Y			
26	1A	SUB	F5	CTRL+ Z			
27	1B	ESC	F6	CTRL+ [
28	1 C	FS	F7	CTRL+ $\$ & \hline 29 & 1D & GS & F8 & CTRL+] & \hline 30 & 1E & RS & F9 & CTRL+^ & \hline 31 & 1F & US & F10 & CTRL+ - & \hline 127 & 7F & \bigcirc	NP Enter		

Lower ASCII Reference Table

Note: Windows Code page 1252 and lower ASCII use the same characters.

Printable Characters									
DEC	HEX	Character	DEC	HEX	Character	DEC	HEX	Character	
32	20	<SPACE>	64	40	$@$	96	60	-	
33	21	$!$	65	41	A	97	61	a	
34	22	$"$	66	42	B	98	62	b	
35	23	$\#$	67	43	C	99	63	c	

Printable Characters (Continued)								
DEC	HEX	Character	DEC	HEX	Character	DEC	HEX	Character
36	24	\$	68	44	D	100	64	d
37	25	\%	69	45	E	101	65	e
38	26	\&	70	46	F	102	66	f
39	27	'	71	47	G	103	67	g
40	28	$($	72	48	H	104	68	h
41	29)	73	49	I	105	69	I
42	2A	*	74	4A	J	106	6A	j
43	2B	+	75	4B	K	107	6B	k
44	2C	,	76	4C	L	108	6C	1
45	2D	-	77	4D	M	109	6D	m
46	2E	.	78	4E	N	110	6E	n
47	2F	1	79	4F	O	111	6F	0
48	30	0	80	50	P	112	70	p
49	31	1	81	51	Q	113	71	q
50	32	2	82	52	R	114	72	r
51	33	3	83	53	S	115	73	s
52	34	4	84	54	T	116	74	t
53	35	5	85	55	U	117	75	u
54	36	6	86	56	V	118	76	v
55	37	7	87	57	W	119	77	w
56	38	8	88	58	X	120	78	x
57	39	9	89	59	Y	121	79	y
58	3A	:	90	5A	Z	122	7A	z
59	3B	;	91	5B	[123	7B	\{
60	3C	<	92	5C	1	124	7 C	1
61	3D	$=$	93	5D]	125	7D	\}
62	3E	$>$	94	5E	\wedge	126	7E	\sim
63	3F	?	95	5F	-	127	7F	\bigcirc

Extended ASCII Characters					
DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code
128	80	€	Ç	up arrow \uparrow	0x48
129	81		ü	down arrow \downarrow	0×50
130	82	,	é	right arrow \longrightarrow	0x4B
131	83	f	â	left arrow \leftarrow	0x4D
132	84	"	ä	Insert	0x52
133	85	\ldots	à	Delete	0x53
134	86	\dagger	à	Home	0x47
135	87	\ddagger	Ç	End	0x4F
136	88	\cdots	ê	Page Up	0x49
137	89	\%	ë	Page Down	0x51
138	8A	Š	è	Right ALT	0x38
139	8B	<	ï	Right CTRL	0x1D
140	8C	OE	î	Reserved	n/a
141	8D		ì	Reserved	n/a
142	8E	Ž	Ä	Numeric Keypad Enter	0x1C
143	8F		A	Numeric Keypad /	0x35
144	90		É	F1	0x3B
145	91	'	æ	F2	0x3C
146	92	,	た	F3	0x3D
147	93	"	ô	F4	0x3E

Extended ASCII Characters (Continued)						
DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code	
148	94	"	ö	F5	0x3F	
149	95	-	ò	F6	0x40	
150	96	-	û	F7	0x41	
151	97	-	ù	F8	0x42	
152	98	\sim	ÿ	F9	0x43	
153	99	TM	Ö	F10	0x44	
154	9A	š	Ü	F11	0×57	
155	9B	,	¢	F12	0x58	
156	9C	œ	£	Numeric Keypad +	0x4E	
157	9D		$¥$	Numeric Keypad -	0x4A	
158	9E	ž	Pts	Numeric Keypad *	0x37	
159	9F	\ddot{Y}	f	Caps Lock	0x3A	
160	A0		á	Num Lock	0x45	
161	A1	i	í	Left Alt	0x38	
162	A2	¢	ó	Left Ctrl	0x1D	
163	A3	£	ú	Left Shift	0x2A	
164	A4	-	ñ	Right Shift	0x36	
165	A5	$¥$	Ñ	Print Screen	n/a	
166	A6	I	a	Tab	0x0F	
167	A7	§	-	Shift Tab	0x8F	
168	A8		¿	Enter	0x1C	
169	A9	©	-	Esc	0x01	
170	AA	a	\neg	Alt Make	0x36	
171	AB	«	$1 / 2$	Alt Break	0xB6	
172	AC	7	$1 / 4$	Control Make	0x1D	
173	AD		i	Control Break	0x9D	
174	AE	${ }^{\text {® }}$	"	Alt Sequence with 1 Character	0x36	
175	AF	-	"	Ctrl Sequence with 1 Character	0x1D	
176	B0	-	\%			
177	B1	\pm	衰			
178	B2	${ }^{2}$				
179	B3	3				
180	B4	,	-			
181	B5	μ	=			
182	B6	I	-			
183	B7	.	π			
184	B8	,	7			
185	B9	1	\pm			
186	BA	-	\\|			
187	BB	"	7			
188	BC	$1 / 4$	」			
189	BD	1/2	ل1			
190	BE	3/4	\pm			
191	BF	i	7			
192	C0	À	L			
193	C1	Á	\perp			
194	C2	Â	T			
195	C3	Ã	F			
196	C4	Ä	-			
197	C5	A	í			
198	C6	Æ	F			
199	C7	Ç	-			

Extended ASCII Characters（Continued）					
DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code
200	C8	È	L		
201	C9	É	「		
202	CA	Ê	$\xrightarrow{\text { IL }}$		
203	CB	Ë	T		
204	CC	ì	It		
205	CD	Í	$=$		
206	CE	Î	\pm		
207	CF	İ	$\stackrel{1}{1}$		
208	D0	Đ	II		
209	D1	Ñ	〒		
210	D2	Ò	π		
211	D3	Ó	II		
212	D4	Ô	t		
213	D5	Õ	F		
214	D6	Ö	π		
215	D7	\times	\＃		
216	D8	\varnothing	\＃		
217	D9	Ù	」		
218	DA	Ú	Γ		
219	DB	Û			
220	DC	Ü	\square		
221	DD	Ý			
222	DE	P	I		
223	DF	B	－		
224	E0	à	a		
225	E1	á	B		
226	E2	â	Γ		
227	E3	ã	π		
228	E4	ä	Σ		
229	E5	å	σ		
230	E6	æ	μ		
231	E7	¢̧	T		
232	E8	è	Φ		
233	E9	é	Θ		
234	EA	ê	Ω		
235	EB	ë	δ		
236	EC	ì	∞		
237	ED	í	φ		
238	EE	î	ε		
239	EF	ï	\cap		
240	F0	ð	三		
241	F1	ñ	\pm		
242	F2	ò	\geq		
243	F3	ó	\leq		
244	F4	ô	1		
245	F5	õ	I		
246	F6	ö	\div		
247	F7	\div	\approx		
248	F8	\varnothing	－		
249	F9	ù	．		
250	FA	ú	\cdot		
251	FB	û	\checkmark		

Extended ASCI Characters (Continued)						
DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code	
252	FC	ü	n			
253	FD	\dot{y}	2			
254	FE	p	-			
255	FF	\ddot{y}				

ISO 2022/ISO 646 Character Replacements

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, select the code page with which the bar codes were created. The data characters should then appear properly.

Code Page Selection Method/Country	Standard	Keyboard Country	Honeywell Code Page Option
United States (standard ASCII)	ISO/IEC 646-IRV	n/a	1
Automatic National Character Replacement	ISO/IEC 2022	n/a	2 (default)
Binary Code page	n/a	n/a	3
Default "Automatic National Character replacement" will select the below Honeywell Code Page options for Code128, Code 39 and Code 93.			
United States	ISO/IEC 646-06	0	1
Canada	ISO /IEC 646-121	54	95
Canada	ISO /IEC 646-122	18	96
Japan	ISO/IEC 646-14	28	98
China	ISO/IEC 646-57	92	99
Great Britain (UK)	ISO /IEC 646-04	7	87
France	ISO /IEC 646-69	3	83
Germany	ISO/IEC646-21	4	84
Switzerland	ISO /IEC 646-CH	6	86
Sweden / Finland (extended Annex C)	ISO/IEC 646-11	2	82
Ireland	ISO /IEC 646-207	73	97
Denmark	ISO/IEC 646-08	8	88
Norway	ISO/IEC 646-60	9	94
Italy	ISO/IEC 646-15	5	85
Portugal	ISO/IEC 646-16	13	92
Spain	ISO/IEC 646-17	10	90
Spain	ISO/IEC 646-85	51	91

Dec			35	36	64	91	92	93	94	96	123	124	125	126
Hex			23	24	40	5B	5 C	5D	5 E	60	7B	7 C	7D	7E
US	0	1	\#	\$	@	[1]	\wedge	-	\{	1	\}	\sim
CA	54	95	\#	\$	à	â	¢̧	ê	̂̂	ô	é	ù	è	û
CA	18	96	\#	\$	à	â	¢̧	ê	É	ô	é	ù	è	û
JP	28	98	\#	\$	@	[¥]	\wedge	-	\{	\|	\}	-
CN	92	99	\#	¥	@	[1]	\wedge		\{	\|	\}	-
GB	7	87	£	\$	@	[1]	\wedge	-	\{	1	\}	\sim
FR	3	83	£	\$	à	。	ç	§	\wedge	μ	é	ù	è	.
DE	4	84	\#	\$	§	Ä	Ö	Ü	\wedge	-	ä	Ö	ü	ß
CH	6	86	ù	\$	à	é	ç	ê	̂̂	ô	ä	Ö	ü	û
SE/FI	2	82	\#	\square	É	Ä	Ö	Å	Ü	é	ä	ӧ	å	ü
DK	8	88	\#	\$	@	A	\emptyset	Å	\wedge	-	æ	\emptyset	å	\sim
NO	9	94	\#	\$	@	A	\emptyset	Å	\wedge	-	æ	\emptyset	å	-
IE	73	97	f	\$	Ó	É	Í	Ú	Á	ó	é	í	ú	á
IT	5	85	f	\$	§	-	Ç	é	\wedge	ù	à	ò	è	i
PT	13	92	\#	\$	§	Ã	Ç	Õ	\wedge	-	ã	ç	õ	。
ES	10	90	\#	\$	§	i	Ñ	¿	\wedge	-	-	ñ	Ç	\sim
ES	51	91	\#	\$		i	Ñ	Ç	¿	-		ñ	ç	*
7 2 8 8 0	Country Keyboard		ISO	C 6	Nati	C	ter	la	ent					

Keyboard Key References

104 Key U.S. Style Keyboard

105 Key European Style Keyboard
Required Safety Label

ESD Precautions

The scan engine is shipped in ESD safe packaging. Use care when handling the scan engine outside its packaging. Be sure grounding wrist straps and properly grounded work areas are used.

Dust and Dirt

The scan engine must be sufficiently enclosed to prevent dust particles from gathering on the scan engine and lens. When stocking the unit, keep it in its protective packaging. Dust and other external contaminants will eventually degrade unit performance.

Product Environmental Information

Refer to www．honeywellaidc．com／environmental for the RoHS／REACH／WEEE information．
15
有毒有害物质名称及含量的标识格式（Names and Content of Hazardous Substances or Elements）

部件名称（Parts Name）	有毒有害物质或元素（Toxic and Hazardous Substances or Elements）					
	铅（Pb）	汞（Hg）	镉（Cd）	六价铬 （Cr6＋）	多溴联苯 （PBB）	多溴二苯醚 （PBDE）
成像式二维条码阅读器 （2D Imager）	X	0	0	O	0	0
印刷电路板（PCB）	x	\bigcirc	\bigcirc	\bigcirc	○	\bigcirc
外壳（Housing）	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0
本表格依据 SJ／T11364－2014 的规定编制。（The table is created by SJ／T11364－2014 requirement．）						
o：表示该有害物质在该部件所有均质材料中的含量均在 GB／T26572－2011标准规定的限量要求以下（Indicates that this hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement in China＇s GB／T26572－2011．） x ：表示该有害物质至少在该部件的某一均质材料中的含量超出 GB／T26572－2011 标准规定的限量要求（Indicates that this hazardous substance contained in at least one of the homogeneous materials for this part is above the limit requirement in China＇s GB／T26572－2011．）						

A-12

Sample Symbols

UPC-A

01234567890

9780330290951

Code 128

BC321

Interleaved 2 of 5

1234567890

Codabar

A13579B

Code 93

123456-9\$

Code 2 of 5

123456

Matrix 2 of 5

Sample Symbols

Programming Chart

$||||||||||||||||||||||||||||\mid$

5

LTC

Honeywell Scanning \& Mobility
9680 Old Bailes Road
Fort Mill, SC 29707

